
https://bibis.ir

Responsible AI
Designing, Building, and Assessing Machine

Learning and AI

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

Patrick Hall and Rumman Chowdhury

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Responsible AI
by Patrick Hall and Rumman Chodhury

Copyright © 2021 Patrick Hall and Rumman Chowdhury. All rights
reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editors: Michele Cronin and Rebecca Novack

Production Editor: Deborah Baker

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

August 2022: First Edition

Revision History for the Early Release

2021-05-26: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098102432 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Responsible AI, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://oreilly.com/
http://oreilly.com/catalog/errata.csp?isbn=9781098102432

The views expressed in this work are those of the authors, and do not
represent the publisher’s views. While the publisher and the authors have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the authors disclaim
all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-098-10243-2

[LSI]

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Preface

Today, machine learning (ML) is the most commercially viable
subdiscipline of artificial intelligence (AI). ML systems are used to make
high-stakes decisions in employment, bail, parole, lending and in many
other applications throughout the world’s economies. In a corporate setting,
ML systems are used in all parts of an organization - from consumer-facing
products, to employee assessments, back-office automation, and more.
Indeed, the past decade has brought with it wider adoption of ML
technologies. But it has also proven that ML presents risks to it’s operators
and consumers. Unfortunately, and like nearly all other technologies, ML
can fail - whether by unintentional misuse or intentional abuse. As of today,
the Partnership on AI Incident Database holds over 1,000 public reports of
algorithmic discrimination, data privacy violations, training data security
breaches and other harmful failures. Such risks must be mitigated before
organizations, and the general public, can realize the true benefits of this
exciting technology. As of today, this still requires action from people — 
and not just technicians. Addressing the full range of risks posed by
complex ML technologies requires a diverse set of talents, experiences, and
perspectives. This holistic risk mitigation approach, incorporating technical
practices, business processes, and cultural capabilities, is becoming known
as responsible AI.

Who Should Read This Book
Non-technical oversight personnel - along with activists, journalist, and
conscientious folks - need to feel empowered to audit, assess, and evaluate
high-impact AI systems. Data scientists often need more exposure to
cutting-edge technical approaches for responsible AI. Both of these groups
need the appropriate critical literacy to appreciate the expertise the other has
to offer, and to incorporate shared learnings into their respective work.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Responsible AI is the field guide for this new generation of auditors,
assessors, leaders and practitioners who seek AI systems that are better for
organizations, consumers, and the public. In reading Responsible AI,
auditors and attorneys can learn how to reframe their valuable knowledge
and experience for better risk management of AI systems. Business leaders
can use this book to understand the wide range of available approaches for
building responsible AI culture, processes and governance, and to get a
better grasp of the limitations of today’s AI systems. Data scientists can use
Responsible AI to learn responsible AI methods, and to apply their technical
skills with an improved understanding of the real-world complexities
implicated by AI system decisions.

What Readers Will Learn
Responsible AI defines the eponymous concept and emphasizes why it’s so
important. It addresses how to build accountable and diverse organizational
cultures around AI, the necessary organizational structures and impactful
roles that individuals can play, how existing roles at companies are evolving
to incorporate responsible AI, and how responsible AI is being put into
practice today. Integral to all of this is the education around, and
standardization of, processes by which individuals can assess AI systems
and appreciate the impact they have on business functions, consumers, and
the public at large. To that end, Responsible AI examines effective privacy
and security policies for AI, applicable legal and compliance standards, the
role of traditional model risk management, and AI incident response
planning. This book also aims to reinforce auditing and oversight
knowledge by linking business and social outcomes to technical tools.
Numerous technical approaches to engineer responsible AI systems are
available today, and for all stages of the AI lifecycle. For the technical
reader, Responsible AI explores porting standard software quality assurance
processes to AI systems, experimental design for AI, and reproducibility,
interpretability, fairness, security, and testing and debugging technologies.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Preliminary Book Outline
By the end of this book the reader will understand cultural competencies,
business processes, and technical practices for responsible AI. The book is
divided into three parts that echo each major facet of responsible AI. Each
part of the book is split further into chapters that discuss specific subjects
and cases. While the book is still being planned and written, Responsible AI
will open with an introduction to the topic and then proceed to Part 1. A
tentative outline for the book follows:

Part 1: The Human Touch—Cultural Competencies For Responsible
Machine Learning

Part 1 is targeted at the importance of organizational culture in the
broader practice of responsible AI. Plans for the first chapter of Part 1
involve a call to stop going fast and breaking things, with a focus on
well-known AI system failures and associated vocabulary and cases.
Chapter 2 will analyze consumer protection laws, model risk
management, and other guidelines, lessons and cases important for
fostering accountability in AI organizations and systems. Chapter 3 will
examine teams, organizational structures and the concept of an AI
assessor. Chapter 4 will discuss the importance of meaningful human
interactions with AI systems, and Chapter 5 is intended to detail
important ways of working outside of traditional organizational
constraints, like protests, data journalism, and white-hat hacking.

Part 2: Setting Up for Success—Organizational Process Concerns For
Responsible Machine Learning

Part 2 is slated to cover responsible AI processes. It will begin with
Chapter 6 and an exploration of how organizational policies and
processes affect fairness in AI systems, and the startling lack thereof.
Chapter 7 will outline common privacy and security policies for AI
systems. Chapter 8 will consider existing and future laws and
regulations that govern AI deployments in the United States. Chapter 1
will highlight the importance of model risk management for AI systems,
but also points out a few shortcomings. Finally, the blueprint for

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 10 is a discussion of how corporations have heeded past calls
for social and environmental responsibility in the context of future
responsible AI adoption.

Part 3: The Scientific Method Versus The Kitchen Sink—Technical
Approaches For Enhanced Human Trust And Understanding

The agenda for Part 3 covers the burgeoning technological ecosystem
for responsible AI. Chapter 11 will address the important science of
experimental design, and how it’s been largely ignored by contemporary
data scientists. Chapter 12 will summarize the two leading technologies
for increasing transparency in AI: interpretable ML models and post-
hoc explainable AI (XAI). Chapter 13 is planned to be a deep dive into
the world of bias testing and remediation for ML models, and should
address both traditional and emergent approaches. Chapter 14 will cover
security for ML algorithms and AI systems, and Chapter 2 will close
Part 3 with a wide-ranging discussion of safety and performance testing
for AI systems, sometimes also known as model debugging.

Bringing It All Together
After all that analysis and exposition, Responsible AI will end with a
Chapter entitled “Bringing It All Together.” It serves as a reminder that
while building responsible AI organizations and technology is hard work,
it’s also quite within reach for individuals and organizations alike.
Moreover, it’s necessary. The AI genie is out of the bottle. Headlines
revealing embarrassing and damaging AI incidents became much more
common in 2020. They won’t stop until people remake AI into responsible
AI.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

O’Reilly Online Learning

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

You can access the web page for this book, where we list errata and any
additional information, at http://www.oreilly.com/catalog/9781098102432.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://oreilly.com/
http://oreilly.com/
http://www.oreilly.com/catalog/9781098102432
mailto:bookquestions@oreilly.com

For news and information about our books and courses, visit
http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

Chapter 1. Contemporary Model
Governance

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles. This will be Chapter 9 of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at mcronin@oreilly.com.

Complex systems tend to drift toward unsafe conditions unless constant
vigilance is maintained.

—Closing the AI Accountability Gap, Google Research

Building the best AI system starts with cultural competencies and business
processes. Along with a case that illustrates what happens when an AI
system is built without proper rigor, this chapter presents numerous cultural
and procedural approaches you can use to improve AI performance and
safeguard your organization’s AI against real-world safety and performance
problems. The primary goal of the methodologies discussed in this chapter
is to create better AI systems. This might mean improved in silica test data
performance. But it really means training models that perform as expected
once deployed in vivo, so you don’t lose money, hurt people or cause other
harms.

We’ll begin with a discussion of basic legal standards, to inform system
developers of their fundamental obligations when it comes to safety and
performance. Because those who do not study history are bound to repeat it,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

mailto:mcronin@oreilly.com
https://arxiv.org/pdf/2001.00973.pdf

we’ll then highlight AI incidents, and discuss why understanding AI
incidents is important for proper safety and performance in AI systems.
Since many AI safety concerns require thinking beyond technical
specifications, we then blend model risk management (MRM) and
information technology (IT) security best practices to put forward numerous
ideas for improving AI safety culture and processes within organizations.
This chapter will close with a case study focusing on safety culture, legal
ramifications, and AI incidents.

Basic Legal Obligations
As makers of consumer products, data scientists and ML engineers have a
fundamental obligation to create safe systems. To quote a recent Brookings
Institute report, Products liability law as a way to address AI harms,
“Manufacturers have an obligation to make products that will be safe when
used in reasonably foreseeable ways. If an AI system is used in a
foreseeable way and yet becomes a source of harm, a plaintiff could assert
that the manufacturer was negligent in not recognizing the possibility of
that outcome.” Just like car or power tool manufacturers, makers of AI
systems are subject broad legal standards for negligence and safety. Product
safety has been the subject of large amounts of legal and economic analysis,
but this subsection will focus on one of the first and simplest standards for
negligence: the Hand Rule. Named after Judge Learned Hand, and coined in
1947, provides a viable framework for AI product makers to think about
negligence and due diligence. The Hand Rule says that a product maker
takes on a burden of care, and that such care should always be greater than
the probability that an incident involving the product occurs multiplied by
the expected loss related to an incident. Stated algebraically:

B ≥ PL

In more plain terms, organizations are expected to apply care, i.e. time,
resources, or money, to a level commensurate to the cost associated with a
risk. Otherwise legal liability can ensue.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.brookings.edu/research/products-liability-law-as-a-way-to-address-ai-harms/

In Figure 1-1, Burden is the parabolicly increasing line, and risk, or
Probability multiplied by Loss, is the parabolicly decreasing line. While
these lines are not related to a specific measurement, their parabolic shape
is meant to reflect the last mile problem in removing all AI system risk, and
that the application of additional care beyond a reasonable threshold leads
to diminishing returns for decreasing risk as well.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Figure 1-1. An illustration of the Hand Rule. Adapted from Economic Analysis of Alternative
Standards of Liability in Accident Law.

While it’s probably too resource intensive to calculate the quantities in the
Hand Rule exactly, it is important to think about these concepts of
negligence and liability when designing an AI system. For a given AI
system, if the probability of an incident is high, if the monetary, or other,
loss associated with a system incident is large, or both quantities are large,
your organization needs to spend extra resources on ensuring safety for that
system. Moreover, your organization should document to the best of your
ability that due diligence exceeds the estimated failure probabilities
multiplied by the estimated losses.

Of course there are legal considerations beyond product liability. The
United States (US) Federal Trade Commission’s (FTC) recent rounds of AI
guidance are also important for safety and performance. The FTC is urging
organizations deploying AI to prioritize fairness, transparency,
accountability, and mathematical soundness. While many of those subjects
are better suited for other chapters, accountability is crucial for safety and
performance. In this context, accountability often means holding yourself to
independent standards and allowing for independent oversight. The FTC
has also been crystal clear about deceptive practices. AI cannot be used to
deceive consumers, or you may face serious enforcement activities. When
the FTC found that the photosharing app EverAlbum was being used to
collect training data for a facial recognition system operating under a
parallel line of business named Paravision, they forced the deletion of the
facial recognition system and levied orders to prevent revenue generation
based off the deceptive practices.

Much like the EU General Data Protection Regulation (GDPR) has changed
the way companies handle data in US, any EU AI regulations will likely
have an out-sized impact on US AI deployments. Well, the EU did recently
propose sweeping and wide-ranging AI regulations. These regulations cover
nearly every aspect of the commercial use of AI, and for safety and
performance they mandate risk-tiering, and differing levels of system
documentation, quality management, and monitoring based on risk

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://cyber.harvard.edu/bridge/LawEconomics/neg-liab.htm
https://www.ftc.gov/news-events/blogs/business-blog/2021/04/aiming-truth-fairness-equity-your-companys-use-ai
https://www.ftc.gov/news-events/blogs/business-blog/2020/04/using-artificial-intelligence-algorithms
https://techcrunch.com/2021/01/12/ftc-settlement-with-ever-orders-data-and-ais-deleted-after-facial-recognition-pivot/
https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-intelligence-artificial-intelligence

determination. The remainder of this chapter and much of Chapter 2 will be
provide helpful information on addressing these requirements and more.

AI Incidents
In many ways, the fundamental goal of the AI safety processes and related
model debugging discussed in Chapter 2, is to prevent and mitigate AI
incidents. Here, we’ll loosely define AI incidents as any outcome of the
system that could cause harm. And using the Hand rule as a guide, the
severity of an AI incident is increased by the loss the incident causes, and
decreased by the care taken by the operators to mitigate those losses.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Figure 1-2. A basic taxonomy of AI incidents. Adapted from What to Do When AI Fails.

Because complex systems drift toward failure, there is no shortage of AI
incidents to discuss as examples. AI incidents can range from annoying to
deadly — from mall security robots falling down stairs, to self-driving cars
killing pedestrians, to mass-scale diversion of healthcare resources away

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.oreilly.com/radar/what-to-do-when-ai-fails/
https://s.weibo.com/weibo?q=%23%E5%95%86%E5%9C%BA%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%8E%89%E4%B8%8B%E6%89%B6%E6%A2%AF%E6%92%9E%E5%80%92%E4%B9%98%E5%AE%A2%23&from=default
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://www.nature.com/articles/d41586-019-03228-6

from those who need them most. As pictured in Figure 1-2, AI incidents can
be roughly divided into three buckets:

Abuses

AI can be used for nefarious purposes, apart from specific hacks and
attacks on AI systems. The day may already be have come where
hackers use AI to increase the efficiency and potency of their more
general attacks. What the future could hold is even more frightening.
Specters like autonomous drone attacks and ethnicity profiling by
authoritarian regimes are already on the horizon.

Attacks

Examples of all major types of attacks - confidentiality, integrity, and
availability attacks (see Chapter 13 for more information) - have been
published by researchers. Confidentiality attacks involve the exfiltration
of training data or model logic from AI system end-points. Integrity
attacks include adversarial manipulation of training data or model
outcomes, either through adversarial examples, evasion, impersonation,
or poisoning. Availability attacks can be conducted through more
standard denial-of-service approaches, or via algorithmic discrimination
induced by some adversary to deny system services to certain groups of
users.

Failures

AI system failures tend to involve algorithmic discrimination, safety
and performance lapses, data privacy violations, inadequate
transparency, or problems in third party system components.

AI incidents are a reality. And like the systems from which they arise, AI
incidents can be complex. AI incidents have multiple causes: failures,
attacks, and abuses. They also tend to blend traditional notions of computer
security, with concerns like data privacy and algorithmic discrimination.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

The 2016 Tay chatbot incident is an informative example. Tay was a state-
of-the-art chatbot trained by some of the world’s leading experts at
Microsoft Research for the purpose of interacting with people on Twitter to
increase awareness about AI. Sixteen hours after its release - and 96,000
tweets later - later Tay had spiraled into a neo-nazi pornagrapher and had to
be shut down. What happnened? Twitter users quickly learned that Tay’s
adpative learning system could easily be poisoned. Racist and sexual
content tweeted at the bot was quickly incorporated into its training data,
and just as quickly resulted in offensive output. Data poisoning is an
integrity attack, but due to the context in which it was carried out, this
attack resulted in algorthmic discrimination. It’s also important to note that
Tay’s designers, being world-class experts at an extremely well-funded
research center, seemed to have put some guide rails in place. Tay would
respond to certain hot-button issues with pre-canned responses. But that
was not enough, and Tay devolved into a public security and algorithmic
discrimination incident for Microsoft Research.

Likely because of nothing more than silly hype, Tay was released without
counter-measures for attacks, and due to the complexity of its operating
environment this security breach morphed into a large-scale algorithmic
discrimination incident. Think this was a one-off incident? Wrong. Just
recently, again due to hype and failure to think through performance, safety,
and security risks systematically, many of Tay’s most obvious failures were
repeated in ScatterLab’s release of it’s Lee Luda chatbot. When designing
AI systems, plans should be compared to past known incidents in hope of
preventing future similar incidents. This is precisely the point of recent AI
incident database efforts and associated publications.

AI incidents can also be an apolitical motivator for responsible technology
development. For better or worse, cultural and political viewpoints on
topics like algorithmic discrimination and data privacy can vary widely.
Getting a team to agree on ethical considerations can be very difficult. It
might be easier to get them working to prevent embarrassing and potentially
costly or dangerous incidents, which should be a baseline goal of any
serious data science team. The notion of AI incidents is central to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://en.wikipedia.org/wiki/Tay_(bot)
https://slate.com/technology/2021/04/scatterlab-lee-luda-chatbot-kakaotalk-ai-privacy.html
https://incidentdatabase.ai/
https://arxiv.org/pdf/2011.08512.pdf

understanding AI safety and a central theme of this chapter’s content is
cultural competencies and business processes that can be used to prevent
and mitigate AI incidents. We’ll dig into those mitigants in the next sections
and take a deep dive into a real incident to close the chapter.

Organizational and Cultural Competencies
for Responsible AI
An organization’s culture is an essential aspect of responsible AI. This
section will discuss the cultural competencies like accountability, drinking
your-own champagne, domain expertise, and the stale adage, “go fast and
break things.”

Accountability
A key to the successful mitigation of AI risks is real accountability within
organizations for AI incidents. If no one’s job is at stake when an AI system
fails, gets attacked, or is abused for nefarious purposes, then it’s entirely
possible that no one in that organization really cares about AI safety and
performance. In addition to developers who think through risks, apply
software quality assurance (QA) techniques, and model debugging
methods, organizations need individuals or teams who validate AI system
technology and audit associated processes. Organizations also need
someone to be responsible for AI incident response plans. All of this is why
leading financial institutions, whose use of predictive modeling has been
regulated for decades, employ a practice known as model risk management
(MRM). MRM is patterned off the Federal Reserve’s S.R. 11-7 model risk
management guidance, that arose out the of the financial crisis during the
Great Recession. Notably, implementation of MRM often involves
accountable executives and several teams that are responsible for safety and
performance of models and AI systems.

Leadership and Teams: Chief Model Risk Officer and the Three
Lines of Defense

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

http://crocouncil.org/images/CROC_Model_Risk_Management_-_Practices_and_Principles_August_2016.pdf
https://www.fdic.gov/news/financial-institution-letters/2017/fil17022a.pdf

Implementation of MRM standards usually requires several different teams
and executive leadership. Two key tenants form the cultural backbone for
MRM:

Effective Challenge

Effective challenge dictates that personnel who did not build an AI
system perform validation and auditing of such systems. MRM
practices typically distribute effective challenge across three “lines of
defense,” where system developers make up the first line of defense and
independent technical validators and process auditors make up the
second and third lines, respectively.

Accountable Leadership

A specific executive within an organization should be accountable for
ensuring AI incidents do not happen. This position is referred to as chief
model risk officer (CMRO). It’s also not uncommon for CMRO terms of
employment and compensation structure to be linked to AI system
performance. The role of CMRO offers a very straightforward cultural
check on AI safety and performance. When your boss really cares about
AI system safety and performance, then you start to care too.

Incentives

Data science staff and management must be incentivized to implement
AI responsibly. Often, compressed product timelines can incentivize the
creation of a minimum viable product first, with rigorous testing and
remediation relegated to the end of the model life cycle immediately
before deployment to production. Moreover, AI testing and validation
teams are often evaluated by the same criterion as AI development
teams, leading to a fundamental misalignment where testers and
validators are encouraged to move quickly rather than assure quality.
Aligning timeline, performance evaluation, and pay incentives to team
function helps solidify a culture of responsible AI and risk mitigation.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Of course, small or young organizations may not be able to spare an entire
full-time employee to monitor ML AI system risk. But it’s important to
have an individual or group responsible and held accountable if AI systems
cause incidents. If an organization assumes everyone is accountable for ML
risk and AI incidents, the reality is that no one is accountable.

Cultural effective challenge
Whether your organization is ready to adopt full-blown MRM practices, or
not, you can still benefit from certain aspects of MRM. In particular, the
cultural competency of effective challenge can be applied outside of the
MRM context. At it’s core, effective challenge means actively challenging
and questioning steps in the development of AI systems. An organizational
culture that encourages serious questioning of AI system designs will be
more likely to develop effective AI systems or products, and to catch
problems before they explode into harmful incidents. Note that effective
challenge cannot be abusive, and it must apply equally to all personnel
developing an AI system, especially so-called “rockstar” engineers and data
scientists. Effective challenge should also be structured, such as weekly
meetings where current design thinking is questioned and alternative design
choices are considered.

Drinking Your Own Champagne
Also known as “eating your own dog food,” the practice of drinking your
own champagne refers to using your own software or products inside of
your own organization. Often a form of pre-alpha or pre-beta testing,
drinking your own champagne can identify problems that emerge from the
complexity of real-world deployment environments before bugs and
failures affect customers, users or the general public. Because serious issues
like concept drift, algorithmic discrimination, shortcut learning or
underspecification are notoriously difficult to identify using standard ML
development processes, drinking your own champagne provides a limited
and controlled, but also realistic, test bed for AI systems. Of course, when
organizations employ demographically and professional diverse teams,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

including domain experts in the field where the AI system will be deployed,
drinking your own champagne is more likely to catch a wider variety of
problems. Drinking your own champagne also brings the classical Golden
Rule into AI. If you’re not comfortable using a system on yourself or your
own organization, then you probably shouldn’t deploy that system.

Diverse and Experienced Teams
Diverse teams can bring wider and uncorrelated perspectives to bear on
design, development, and testing AI systems. Non-diverse teams often do
not. Many have documented the unfortunate outcomes that can arise as a
result of data scientists not considering demographic diversity in the
training or results of AI systems. A potential solution to these kinds of
oversights is increasing demographic diversity on AI teams from its current
woeful levels. Business or other domain experience is also important when
building teams. Domain experts are instrumental in feature selection and
engineering, and in the testing of system outputs. In the mad rush to
develop AI systems, domain expert participation can also serve as a safety
check. Generalist data scientists often lack the experience necessary to deal
with domain-specific data and results. Misunderstanding the meaning of
input data or output results is a recipe for disaster that can lead to AI
incidents when a system is deployed. Unfortunately, the social sciences
deserve a special emphasis when it comes to data scientists forgetting or
ignoring the importance of domain expertise. In a trend referred to as
"tech’s quiet colonization of the social sciences,” several organizations have
pursued regrettable AI projects that seek to replace decisions that should be
made by trained social scientists or that simply ignore the collective
wisdom of social science domain expertise altogether.

“Going Fast and Breaking Things”
The mantra, “go fast and break things,” is almost a religious belief for many
“rock-star” engineers and data scientists. Sadly, these top practitioners also
seem to forget that when they go fast and break things, things get broken.
As AI systems make more high-impact decisions that implicate autonomous

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.theguardian.com/technology/2019/apr/16/artificial-intelligence-lack-diversity-new-york-university-study
https://twitter.com/ruchowdh/status/1144006696345505793
https://www.wired.com/story/tech-needs-to-listen-to-actual-researchers
https://www.technologyreview.com/2020/06/23/1004333/ai-science-publishers-perpetuate-racist-face-recognition

vehicles, credit, employment, grades and university attendance, medical
diagnoses and resource allocation, mortgages, pre-trial bail, parole and
more, breaking things means more than buggy apps. It can mean that a
small group of data scientists and engineers causes real harm at scale to
many people. Participating in the design and implementation of high-impact
AI systems requires a mindset change to prevent egregious performance
and safety problems. Practitioners must change from prioritizing the
number of software features they can push or the test data accuracy of an
ML model, to recognizing the implications and downstream risks of their
work.

Organizational Processes for Responsible AI
Organizational processes play a key role in assuring AI systems are safe and
performant. Like the cultural competencies discussed in the previous
section, organizational processes are a key non-technical determinant of
reliability in AI systems. This section on processes starts out by urging
practitioners to consider, document, and attempt to mitigate any known or
foreseeable failure modes for their AI systems. This section then discusses a
mature and tested process framework for governing predictive models
known as model risk management (MRM). While the culture section
focused on the people and mindsets necessary to make MRM a success, this
section will outline the different processes MRM uses to mitigate risks in
advanced predictive modeling and ML systems. While MRM is an
incredible process standard to which we can all aspire, there are additional
important process controls that are not typically part of MRM. We’ll look
beyond traditional MRM in this section and highlight crucial processes for
change management, pair or double programming, and security permission
requirements for code deployment. This section will close with a discussion
of AI incident response. Nearly all powerful commercial technologies suffer
incidents. AI is no different. No matter how hard we work to minimize
harms while designing and implementing an AI system, we still have to
prepare for failures and attacks.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Forecasting Failure Modes
AI safety and ethics experts roughly agree on the importance of thinking
through, documenting, and attempting to mitigate foreseeable failure modes
for AI systems. Unfortunately they also mostly agree that this is a nontrivial
task. Happily, new resources and scholarship on this topic have emerged in
recent years that can help AI system designers forecast incidents in more
systematic ways. If holistic categories of potential failures can be identified,
it makes hardening AI systems for better real-world performance and safety
a more pro-active and efficient task. In this subsection, we’ll discuss one
such strategy, along with a few additional processes for brainstorming
future incidents in AI systems.

Known Past Failures
As discussed in Preventing Repeated Real World AI Failures by Cataloging
Incidents: The AI Incident Database, one the most efficient ways to
mitigate potential AI incidents in your AI systems is to compare your
system design to past failed designs. Much like transportation professionals
investigating incidents, cataloging incidents, using the findings to prevent
related incidents, and to test new technologies, several AI researchers,
commentators, and trade organizations have begun to collect and analyze
AI incidents in hopes of preventing repeated and related failures. Likely the
most high-profile and mature AI incident repository is the Partnership on
AI’s AI Incident Database. This searchable and interactive resource allows
registered users to search a visual database with keywords and locate
different types of information about publicly recorded incidents. Others
have begun collecting AI incidents in simpler GitHub repositories:

AI Incident Tracker

Awful AI

Learning from the past to create Responsible AI

Consult these resources while developing your AI systems. If you see
something that looks familiar, stop and think about what you’re doing. If a

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://arxiv.org/pdf/2011.08512.pdf
https://incidentdatabase.ai/
https://github.com/jphall663/awesome-machine-learning-interpretability/blob/master/README.md#ai-incident-tracker
https://github.com/daviddao/awful-ai
https://romanlutz.github.io/ResponsibleAI/

system similar to the one you’re designing, implementing, or deploying has
caused an incident in the past, this is one of strongest indicators that your
new system could cause an incident.

Failures of Imagination
Imagining the future with context and detail is never easy. And it’s often the
context in which AI systems operate, accompanied by unforeseen or
unknowable details, that lead to AI incidents. In a recent workshop paper,
the authors of Overcoming Failures of Imagination in AI Infused System
Development and Deployment put forward some structured approaches to
hypothesize about those hard-to-imagine future risks. In addition to
deliberating on the who (e.g., investors, customers, vulnerable non-users),
what (e.g., well-being, opportunities, dignity), when (e.g., immediately,
frequently, over long periods of time), and how (e.g., taking an action,
altering beliefs) of AI incidents, they also urge system designers to
consider:

Assumptions that the impact of the system will be only beneficial,
and to admit when uncertainty in system impacts exists.

The problem domain and applied use cases of the system, as
opposed to just the math and technology.

Any unexpected or surprising results, user interactions, and
responses to the system.

Causing AI incidents is embarrassing, if not costly or illegal, for
organizations. AI incidents can also hurt consumers and the general public.
Yet, with some foresight, many of the currently known AI incidents could
have been mitigated, if not wholly avoided. It’s also possible that in
performing the due diligence of researching and conceptualizing AI
failures, you find that your design or system must be completely reworked.
If this is the case, take comfort that a delay in system implementation or
deployment is likely less costly than the harms your organization or the
public could experience if the flawed system was released.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://arxiv.org/pdf/2011.13416.pdf

Model Risk Management
The process aspects of MRM mandate thorough documentation of modeling
systems, human review of systems, and ongoing monitoring of systems.
These processes represent the bulk of the governance burden for the Federal
Reserve’s SR 11-7 MRM guidance, which is overseen by the Federal
Reserve and the Office of the Comptroller of the Currency (OCC) for
predicitve models deployed in material consumer finance applications.
MRM represents the culmination of decades of predictive modeling
governance in consumer finance, and lessons learned from incidents during
those same years. While only large organizations will be able to fully
embrace all that MRM has to offer, any serious AI practitioner can learn
something from the discipline. The subsection below breaks MRM
processes down into smaller components so that you can start thinking
through using aspects of MRM in your organization.

Risk-tiering
As outlined in the opening of this chapter, the product of the probability of
a harm occurring and likely loss resulting from that harm is an accepted
way to rate the risk of given AI system deployment. The product of risk and
loss has a more formal name in the context of MRM, materiality.
Materiality is a powerful concept that enables organizations to assign
realistic risk levels to AI systems. More importantly, this risk-tiering allows
for the efficient allocation of limited development, validation, and audit
resources. Of course, the highest materiality applications should recieve the
greatest human attention and review, while the lowest materiality
applications could potentially be handled by automatic machine learning
(AutoML) systems and undergo minimal validation. Because risk
mitigation for AI systems is an ongoing task, proper resource allocation
between high, medium, and low risk systems is a must for effective
governance.

Model Documentation

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

MRM standards also require that systems be thoroughly documented. In the
traditional MRM setting, documentation covers:

Stakeholder contact information

System business justification

Mathematical assumptions and system usage limitations

Input data dictionary

Preprocessing and algorithm description

Discussion of evaluated alternative approaches

Output data dictionary

Completed testing and validation

Down- and upstream dependencies

Plans for ongoing improvements, testing, validation, and
monitoring

Of course, these documents can be hundreds of pages long, especially for
high-materiality systems. If you’re feeling like that sounds impossible for
your organization today, then maybe these two simpler requirements might
work instead. First, documentation should enable accountability for system
stakeholders, ongoing system maintenance, and a degree of incident
response. Second, documentation must be standardized across systems, for
the most efficient audit and review processes. The proposed datasheet and
model card standards may also be helpful for smaller or younger
organizations.

Model Monitoring
A primary tenant of AI safety is that AI system performance in the real-
world is hard to predict and performance must be monitored. Hence,
deployed system performance should be monitored frequently and until a
system is decommissioned. Systems can be monitored for any number of

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://arxiv.org/pdf/1803.09010.pdf
https://arxiv.org/pdf/1810.03993.pdf

problematic conditions, the most common being input drift. While AI
system training data encodes information about a system’s operating
environment in a static snapshot, the world is anything but static.
Competitors can enter markets, new regulations can be passed, consumer
tastes can change, and pandemics or other disasters can happen. Any of
these can change the live data that’s entering your AI system away from the
characteristics of its training data, resulting in decreased, or even
dangerous, system performance. To avoid such unpleasant surprises, the
best AI systems are monitored both for drifting input and output
distributions and for decaying quality, often known as model decay. While
performance quality is the most common quantity to monitor, AI systems
can also be monitored for anomalous inputs or predictions, specific attacks
and hacks, and for drifting fairness characteristics.

Model Inventories
Any organization that is deploying AI should be able to answer
straightforward questions like:

How many AI systems are currently deployed?

How many customers or users do these systems affect?

Who are the accountable stakeholders for each system?

MRM achieves this goal through the use of model inventories. A model
inventory is a curated and up-to-date database of all an organization’s AI
systems. Model inventories can serve as a repository for crucial information
in documentation, but should also link to monitoring plans and results,
auditing plans and results, important past and upcoming system
maintenance and changes, and plans for incident response.

System Validation and Auditing
Under traditional MRM practices, an AI system undergoes two primary
reviews before its release. The first review is a technical validation of the
system, where skilled validators, not uncommonly Ph.D. data scientists,
attempt to poke holes in system design and implementation, and work with

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

system developers to fix any discovered problems. The second review
investigates processes. Audit and compliance personnel carefully analyze
the system design, development, and deployment, along with
documentation and future plans, to ensure all regulatory and internal
process requirements are meant. Only after these two reviews, would an
executive sign-off for deployment begin. Moreover, because AI systems
change and drift over time, review must take place whenever a system
undergoes a major update or at an agreed upon future cadence.

You may be thinking (again) that your organization doesn’t have the
resources for such heavy-handed reviews. Of course that is a reality for
many small or younger organizations. The keys for validation and auditing,
that should work at nearly an organization, are having technicians who did
not develop the system test it, having a function to review non-technical
internal and external obligations, and having sign-off oversight for
important AI system deployments.

Beyond Model Risk Management
MRM is not the only place to draw inspiration for improved AI safety and
performance processes. There are also lots of lessons to be learned from
software development best practices and from IT security. This subsection
will shine a light on pair programming, least privilege, change management
and incident response from an AI safety and performance perspective.

Pair and Double Programming
Because they tend to be complex and stochastic, it’s hard to know if any
given ML algorithm implementation is correct! This is why some leading
AI organizations implement ML algorithms twice as a quality assurance
(QA) mechanism. Such double implementation is usually achieved by one
of two methods: pair programming or double programming. In the pair
programming approach, two technical experts code an algorithm without
collaborating. Then they join forces and work out any discrepancies
between their implementations. In double programming, the same
practitioner implements the same algorithm twice, but in very different

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

programming languages, such as Python (object-oriented) and SAS
(procedural). They must then reconcile any differences between their two
implementations. Either approach tends to catch numerous bugs that would
otherwise go unnoticed until the system was deployed. Pair and double
programming can also align with the more standard workflow of data
scientists prototyping algorithms, while dedicated engineers harden them
for deployment. However, for this to work, engineers must be free to
challenge and test data science prototypes and not relegated to simply re-
coding prototypes.

Security Permissions for Code Deployment
The concept of least privilege from IT security states that no system user
should ever have more permissions than they need. Least privilege is a
fundamental process control that, likely because AI systems touch so many
other IT systems, tends to be thrown out the window for AI build-outs and
for so-called “rock star” data scientists. Unfortunately, this is an AI safety
and performance anti-pattern. Outside the world of over-hyped AI and rock
star data science, it’s long been understood that engineers cannot adequately
test their own code and that others in a product organization, product
managers, attorneys, or executives, should make the final call as to when
software is released.

For these reasons, the IT permissions necessary to deploy an AI system
should be distributed across several teams within an IT organizations.
During development sprints, data scientists and engineers certainly must
retain full control over their development environments. But, as important
releases or reviews approach, the IT permissions to push fixes,
enhancements, or new features to user-facing products are transferred away
from data scientists and engineers to product managers, legal, executives or
others. Such process controls provide a gate that prevents unapproved code
from being deployed.

Change Management

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://en.wikipedia.org/wiki/Principle_of_least_privilege

Like all complex software applications, AI systems tend to have a large
number of different components. From backend ML code, to application
programming interfaces (APIs), to user interfaces, changes in any
component of the system can cause side-effects in other components. Add
in issues like data drift, emergent data privacy and anti-discrimination
regulations, and complex dependencies on third-party software, and change
management in AI systems becomes a serious concern. There are many
frameworks and project management approaches for change management.
If you’re in the planning or design phase of a mission-critical AI system,
you’ll likely need to make change management a first-class process control.
Without explicit planning and resources for change management, process or
technical mistakes that arise through the evolution of the system, like using
data without consent or API mismatches, are very difficult to prevent.
Furthermore, without change management, such problems might not even
be detected until they cause an incident.

AI Incidents Response
According to the vaunted SR 11-7 guidance, “even with skilled modeling
and robust validation, model risk cannot be eliminated”. If risks from AI
systems and ML models cannot be eliminated, then such risks will
eventually lead to incidents. Incident response is already a mature practice
in the field of computer security. Venerable institutions like NIST and
SANS have published computer security incident response guidelines for
years. Given that AI is a less mature and higher-risk technology than
general purpose enterprise computing, formal AI incident response plans
and practices are a must for high-impact or mission critical AI systems.

Formal AI incident response plans enable organizations to respond more
quickly and effectively to inevitable incidents. Incident response also plays
into the Hand Rule discussed at the beginning of this chapter. With
rehearsed incident response plans in place, organizations may be able to
identify, contain, and eradicate AI incidents before they spiral into costly or
dangerous public spectacles. Although only mandated by regulation in a
few specific verticals as of today, AI incident response plans are one of the
most basic and universal ways to mitigate AI-related risks. Before a system

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.federalreserve.gov/supervisionreg/srletters/sr1107a1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf
https://www.sans.org/score/checklists/apt-incident-handling

is deployed, incident response plans should be drafted and tested. For young
or small organizations that cannot fully implement model risk management,
AI incident response is a primary and potent AI risk control to consider.
Borrowing from computer incident response, AI incident response can be
thought of in six phases:

Phase 1: Preparation

In addition to clearly defining an AI incident for your organization,
preparation for AI incidents includes personnel, logistical, and technology
plans for when an incident occurs. Budget must be set aside for response,
communication strategies must be put in place, and technical safeguards for
standardizing and preserving model documentation, out-of-band
communications, and shutting down AI systems must be implemented. One
of the best ways to prepare and rehearse for AI incidents are table top
discussion exercises, where key organizational personnel work through a
realistic incident. Good starter questions for an AI incident table top
include:

Who has the organizational budget and authority to respond to an
AI incident?

Can the AI system in question be taken offline? By whom? At
what cost? What upstream processes will be affected?

Which regulators or law enforcement agencies need to be
contacted? Who will contact them?

Which external law firms, insurance agencies, or public relation
firms need to be contacted? Who will contact them?

Who will manage communications? Internally, between
responders? Externally, with customers or users?

Phase 2: Identification

Identification is when organizations spot AI failures, attacks, or abuses. In
practice, this tends to involve more general attack identification approaches,

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

like network intrusion monitoring, and more specialized monitoring for AI
system failures, like monitoring for concept drift or algorithmic
discrimination. Identification also means staying vigilant for AI-related
abuses. Often the last step of the identification phase is to notify
management, incident responders, and others specified in incident response
plans.

Phase 3: Containment

Containment refers to mitigating the incident’s immediate harms. Keep in
mind that harms are rarely limited to the system where the incident began.
Like more general computer incidents, AI incidents can have network
effects that spread throughout an organizations’ and its customers’
technologies. Actual containment strategies will vary depending on whether
the incident stemmed from an external adversary, and internal failure, or an
off-label use or abuse of an AI system. If necessary, containment is also a
good place to start communicating with the public.

Phase 4: Eradication

Eradication involves remediating any affected systems. For example,
sealing off any attacked systems from vectors of in- or ex-filtration, or
shutting down a discriminatory AI system and temporarily replacing it with
a trusted rule-based system. After eradication, there should be no new
harms caused by the incident.

Phase 5: Recovery

Recovery means ensuring all affected systems are back to normal and that
controls are in place to prevent similar incidents in the future. Recovery
often means re-training or re-implementing AI systems, and testing that
they are performing at documented pre-incident levels. Recovery can also
require careful analysis of technical or security protocols for personnel,
especially in the case of an accidental failure or insider attack.

Phase 6: Lessons Learned

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Lessons learned refers to corrections or improvements of AI incident
response plans based on the the successes and challenges encountered while
responding to the current incident. Response plan improvements can be
process- or technology-oriented.

For a sneak peek at a free and open AI incident response plan, see the
Sample Incident Response Plan provided by the specialty law firm bnh.ai.

Case Study: Death by Autonomous Vehicle
On the night of March 18, 2018, Elaine Herzberg was walking a bicycle
across a wide intersection in Tempe, Arizona. In what has become one of
the most high-profile AI incidents, she was struck and killed by an
autonomous Uber test vehicle traveling at roughly 40 mph. According to
the National Safety Transportation Board (NTSB), the test vehicle driver,
who was obligated to take control of the vehicle in emergency situations,
was distracted by a smart phone. The self driving AI system also failed to
save Ms. Herzberg. The system did not identify Ms. Herzberg until 1.2
seconds before impact, too late to prevent a brutal crash.

Fallout
Autonomous vehicles are thought to offer safety benefits over today’s status
quo of human-operated vehicles. Indeed, self-driving cars have driven
millions of miles with no fatalities. Yet, the NTSB’s report states that
Uber’s “system design did not include a consideration for jaywalking
pedestrians,” and criticized lax risk assessments and immature safety
culture at the company. Furthermore, an Uber employee raised serious
concerns about 37 crashes in the previous 18 months and common problems
with test vehicle drivers just days before the Tempe incident. As a result of
the Tempe crash, Uber’s autonomous vehicle testing was stopped in four
other cities and governments around the US and Canada began re-
examining safety protocols for self-driving vehicle tests. The driver has
been charged with negligent homicide. Uber has been excused from
criminal liability, but came to a monetary settlement with the deceased’s

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://bnh-ai.github.io/resources/
https://www.reuters.com/article/us-uber-crash/in-review-of-fatal-arizona-crash-u-s-agency-says-uber-software-had-flaws-idUSKBN1XF2HA

family. The city of Tempe and State of Arizona were also sued by Ms.
Herzberg’s family for $10 million each.

An Unprepared Legal System
It must be noted that the legal system in the US is not yet prepared for the
reality of AI incidents, leaving employees, consumers and the general
public largely unprotected from the unique dangers of AI systems operating
in our midst. The EU Parliament has put forward a liability regime for AI
systems that would mostly prevent large technology companies from
escaping their share of the consequences in future incidents. In the US, any
plans for Federal AI product safety regulations are still in a highly
preliminary phase. In the interim, individual cases of AI safety incidents
will likely be decided by lower courts with little education and experience
in handling AI incidents, enabling Big Tech and other AI system operators
to bring vastly asymmetric legal resources to bear against individuals
caught up in incidents related to complex AI systems. Even for the
companies and AI system operators, this legal limbo is not ideal. While the
lack of regulation seems to benefit those with the most resources and
expertise, it makes risk management and predicting the outcomes of AI
incidents more difficult. Regardless, future generations may judge us
harshly for allowing the criminal liability of one of the first AI incidents,
involving many data scientists and other highly paid professionals, to be
pinned solely on a test driver of a supposedly automated vehicle.

Lessons Learned
What lessons learned from this chapter could be applied to this case?

Lesson 1: Culture is important.

A mature safety culture is a broad risk control, bringing safety to the
forefront of design and implementation work, and picking up the slack
in corner cases that processes and technology miss. Learned from the
last generation of life-changing commercial technologies, like aerospace
travel and nuclear power, a more mature safety culture at Uber could

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

have prevented this incident, especially since an employee raised
serious concerns in the days before the crash.

Lesson 2: Mitigate foreseeable failure modes.

The NTSB concluded that Uber’s software did not specifically consider
jaywalking pedestrians as a failure mode. For anyone who’s driven a car
with pedestrians around, this should have been an easily foreseeable
problem for which any self-driving car should be prepared. AI systems
generally are not prepared for incidents unless their human engineers
make them prepared. This incident shows us what happens when those
preparations are not made in advance.

Lesson 3: Test AI systems in their operating domain.

After the crash, Uber stopped and reset its self-driving car program.
After improvements, they were able to show via simulation that their
new software would have started breaking 4 seconds before impact.
Why wasn’t the easily foreseeable reality of jaywalking pedestrians
tested with these same in-domain simulations before the March 2018
crash? The public may never know. But enumerating failure modes and
testing them in realistic scenarios could prevent you or your
organization from having to answer these kinds of unpleasant questions.

A potential bonus lesson here is to consider not only accidental failures, like
the Uber crash, but also malicious hacks against AI systems and the abuse
of AI systems to commit violence. Terrorists have turned motor vehicles
into deadly weapons before, so this is a known failure mode. Precautions
must be taken in autonomous vehicles, and in driving assistance features, to
prevent hacking and violent outcomes in these systems. Regardless of
whether its an accident or a malicious attack, AI incidents will certainly kill
more people. Our hope is that governments and other organizations will
take AI safety seriously, and minimize the number of these somber
incidents in the future.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Chapter 2. Debugging AI
Systems for Safety and
Performance

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles. This will be Chapter 15 of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at mcronin@oreilly.com.

Make sure that your AI models are validated and revalidated to ensure
that they work as intended, and do not illegally discriminate.

—Using AI and Algorithms, United States Federal Trade
Commission

For decades, error or accuracy on hold-out test data has been the standard
by which machine learning (ML) models are judged. Unfortunately, as
machine learning (ML) models are embedded into artificial intelligence
(AI) systems that are deployed more broadly and for more sensitive
applications, the standard approaches for ML model assessment have
proven inadequate. For instance, test data area under the curve (AUC) tells
us almost nothing about algorithmic discrimination, lack of transparency,
privacy harms, or security vulnerabilities. Yet, these problems are often why
AI systems fail once deployed. For acceptable in vivo performance, we
simply must push beyond traditional in silica assessments designed
primarily for research prototypes. Moreover, the best results for safety and

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

mailto:mcronin@oreilly.com
https://www.ftc.gov/news-events/blogs/business-blog/2020/04/using-artificial-intelligence-algorithms

performance occur when organizations are able to mix and match
appropriate cultural competencies and process controls from Chapter 1 with
AI technology that promotes trust. Chapter 2 presents sections on training,
debugging, and deploying AI systems that delve into the numerous
technical approaches for testing and improving safety, performance, and
trust in AI.

Training
The discussion of training ML algorithms begins with reproducibility,
because without that, it’s impossible to know if any one version of an AI
system is really any better than another. Data and feature engineering will
be addressed briefly and the training section closes by outlining key points
for model specification.

Reproducibility
Without reproducibility, you’re building on sand. Reproducibility is
fundamental to all scientific efforts, including AI. Without reproducible
results, it’s very hard to know if day-to-day efforts are improving, or even
changing, an AI system. Reproducibility helps ensure proper
implementation and testing, and some customers may simply demand it.
The techniques discussed below are some of the most common that data
scientists and ML engineers use to establish a solid, reproducible
foundation for their AI systems.

Benchmark Models

Benchmark models are important safety and performance tools for
training, debugging, and deploying AI systems. They’ll be addressed
several times in Chapter 2. In the context of model training and
reproducibility, you should always build from a reproducible benchmark
model. This allows a checkpoint for rollbacks if reproducbility is lost,
but it also enables real progress. If yesterday’s benchmark is

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

reproducible, and today’s gains above and beyond that benchmark are
also reproducible, that’s real and measurable progress!

Hardware

As AI systems often leverage hardware acceleration via graphical
processing units (GPUs) and other specialized system components,
hardware is still of special interest for preserving reproducibility. If
possible, try to keep hardware as similar as possible across
development, testing, and deployment systems.

Environments

AI systems always operate in some computational environment,
specified by the system hardware, system software, and your data and
AI software stack. Changes in any of these can affect the reproducibility
of ML outcomes. Thankfully, tools like Python virtual environments
and Docker containers that preserve software environments have
become commonplace in the practice of data science. Additional
specialized environment management software from Domino Data
Labs, gigantum, TensorFlow, and Kubeflow can provide even more
expansive control of computational environments.

Metadata

Data about data is essential for reproducibility. Track all artifacts
associated with the model, e.g., datasets, preprocessing steps, model,
data and model validation results, human sign offs, and deployment
details. Not only does this allow rolling-back to a specific version of a
dataset or model, but it also allows for detailed debugging and forensic
investigations of AI incidents. For an open-source example of a nice
tool for tracking metadata, checkout TensorFlow ML Metadata.

Random Seeds

Set by data scientists and engineers in specific code blocks, random
seeds are the plow-horse of ML reproducibility. Unfortunately, they

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.dominodatalab.com/
https://gigantum.com/
https://www.tensorflow.org/tfx
https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/
https://www.tensorflow.org/tfx/guide/mlmd

often come with language- or package-specific instructions. Seeds can
take some time learn in different software, but when combined with
careful testing, random seeds enable the building blocks of intricate and
complex AI systems to retain reproducibility. This is a prerequisite for
overall reproducibility.

Version Control

Minor code changes can lead to drastic changes in ML results. Changes
to your own code plus it’s dependencies must be tracked in a
professional version control tool for any hope of reproducibility. Git and
GitHub are free and ubiquitous resources for software version control,
but there are plenty of other options to explore. Crucially, data can also
be version-controlled with tools like Pachyderm and DVC.

Though it may take some experimentation, some combination of these
approaches and technologies should work to assure reproducibility in your
AI system. Once this fundamental safety and performance control is in
place, it’s time to consider other baseline factors like data quality and
feature engineering.

Data Quality and Feature Engineering
Entire books have been written about data quality and feature engineering
for ML and AI systems. This short subsection highlights some of the most
critical aspects of this vast practice from a safety and performance
perspective.

Starting with the basics, both the size and shape of a dataset are important
safety and performance considerations. ML algorithms, that form the guts
of today’s AI systems, are hungry for data. Both small data and wide, sparse
data can lead to catastrophic performance failures in the real-world, because
both give rise to scenarios in which system performance appears normal on
test data, but is simply untethered to real-world phenomena. Small data can
make it hard to detect underfitting, underspecification, overfitting, or other
fundamental performance problems. Sparse data can lead to over-confident

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.pachyderm.com/
https://dvc.org/

predictions for certain input values. If an ML algorithm did not see certain
data ranges during training due to sparsity issues, most ML algorithms will
issue a predictions in those ranges with no warning that the prediction is
based on almost nothing.

A number of other data quality problems can cause safety worries, mostly
due to misrepresentation of important information or propensity to cause
overfitting or pipeline process issues. In Chapter 2, misrepresentation
means data is distorted in a way that is consistent across training data
partitions, but results in incorrect decisions once a model trained on the
incorrect data is applied to new, live data. Overfitting refers to memorizing
noise in training data and resulting optimistic error estimates, and pipeline
issues are problems that arise from combining different stages of data
preparation and modeling components into one prediction-generating
executable. The short checklist below can be applied to most standard ML
problems to help identify common data quality problems with safety and
performance implications.

Misrepresentation

[] No duplicate data over-emphasizing unimportant information

[] No incorrect encoding or decoding of character or binary data

[] No incorrect use of time or date formats

[] Minimal one-hot encoding — reducing unnecessary sparsity

[] Minimal outliers — diminishing influence of outliers on model
parameters or rules

[] Minimal use of simplistic imputation — preventing distortion of
training distributions

[] Minimal correlation — increasing stability in model parameters or
rules

[] Thorough normalization of character values — preventing
mistreatment of modeled entities

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Overfitting

[] No improper treatment of high cardinality categorical features

[] No naive target encoding

[] Minimal duplicate entities across training, validation, or test data
partitions

[] Training data with time or date feature not split randomly for
validation and testing

Pipeline Issues

[] All data cleaning and transformation steps applied during inference

[] Re-adjusting for over- or under-sampling during inference

Of course, many other problems can arise in data preparation and feature
engineering, especially as the types of data that ML algorithms can accept
for training becomes more varied. Applying the lens of misrepresentation,
overfitting, or pipeline issues to think through how discrepancies in data or
pipelines can lead to errors once the system is deployed is usually a helpful
exercise for spotting pitfalls. Tools that detect and address such problems
are also an important part of the the data science toolkit. For Python Pandas
users, the pandas-profiling tool is a visual aide that helps to detect many
basic data quality problems. R users also have options, as discussed by
Mateusz Staniak and Przemysław Biecek in The Landscape of R Packages
for Automated Exploratory Data Analysis.

Model Specification
Once your data preparation and feature engineering pipeline is hardened,
it’s time to think about ML model specification. Considerations for real-
world performance and safety are quite different from getting published or
maximizing performance on ML contest leaderboards. While measurement
of validation and test error remain important, bigger questions of accurately
representing data and commonsense real-world phenomena have the highest

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/pandas-profiling/pandas-profiling
https://arxiv.org/pdf/1904.02101.pdf

priority. This subsection address model specification for safety and
performance by highlighting the importance of benchmarks and alternative
models, discussing the many hidden assumptions of ML models, and
previewing the emergent disciplines of robust ML and ML safety and
reliability.

Benchmarks and Alternatives
When starting a ML modeling task, it’s best to begin with a peer-reviewed
training algorithm, and ideally to replicate any benchmarks associated with
that algorithm. While academic algorithms rarely meet all the needs of
complex business problems, starting from a well-known algorithm and
benchmarks provides a baseline assurance that the training algorithm is
implemented correctly. Once this sanity check is addressed, then think
about tweaking a complex algorithm to address specific quirks of a given
problem.

Along with comparison to benchmarks, evaluation of numerous alternative
algorithmic approaches is another best practice that can improve safety and
performance outcomes. The exercise of training many different algorithms
and judiciously selecting the best of many options for final deployment
typically results in higher-quality models because it increases the number of
models evaluated and forces users to understand differences between them.
Moreover, evaluation of alternative approaches is important in complying
with a broad set of U.S. non-discrimination and negligence standards. In
general, these standards require evidence that different technical options
were evaluated and an appropriate trade-off between consumer protection
and business need was made before deployment.

Hidden Assumptions
Like undetected misrepresentation problems in training data causing major
problems once an AI system is deployed, ML algorithms that don’t align
with fundamental structures in training data or in the real-world domain can
cause serious incidents. Often times data scientists think they matched their

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

models to the problem domain, but a wide array of hidden assumptions can
still cause problems.

Selecting to use an ML algorithm for a modeling problem also comes with a
lot of basic assumptions — essentially that high-degree interactions and
nonlinearity in input features are important drivers of the predicted
phenomenon. Conversely, choosing to use a linear model implicitly
downplays interactions and nonlinearities. If those qualities are important
for high-quality predictions, they’ll have to be specified explicitly for the
linear model. In either case, it’s important to take stock of how main effects,
correlations and local dependencies, interactions, nonlinearities, clusters,
outliers, and hierarchies in training data, or in reality, will be handled by a
modeling algorithm and to test those mechanisms. For optimal safety and
performance once deployed, dependencies on time, geographical locations,
or connections between entities must also be represented within ML
models. Testing for independence of errors between rows in training data or
plotting model residuals and looking for strong patterns are general and
time-tested methods for ensuring such dependencies have been addressed. It
is also possible to directly constrain ML algorithms to reflect reality.
Monotonicity constraints ensure known monotonic relationships are
reflected in ML models. Interaction constraints can prevent arbitrary or
undesirable combinations of input features from affecting model
predictions.

Another often unstated assumption that comes with many learning
algorithms involves squared loss functions. Many ML algorithms use a
squared loss function by default. This means your model thinks that your
modeling target variable follows a normal distribution. Some modeling
targets are normally distributed, but many are not. Matching your target
distribution to your loss function is an important step in aligning your ML
algorithm to the problem domain. Hyperparameters for ML algorithms are
yet another place where hidden assumptions can cause safety and
performance problems. Hyperparameters can be selected based on domain
knowledge or via technical approaches like grid search and Bayesian
optimization. The key is doing this process systematically and not assuming

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

the large number of default settings in most ML algorithms will work for
your data and your problem.

The Future of Safe and Robust Machine Learning
The new field of robust ML is churning out new algorithms with improved
stability and security characteristics. Various researchers are creating new
learning algorithms with guarantees for optimality, like optimal sparse
decision trees. And researchers have put together excellent tutorial
materials on ML safety and reliability. Today, these approaches require
custom implementations and extra work, but hopefully soon these safety
and performance advances will be more widely available.

Model Debugging
Once a model has been properly specified and trained, the next step in the
technical safety and performance assurance process is testing and
debugging. In years past, such assessments focused on accuracy and error
rates in holdout data. As ML models are incorporated in public-facing AI
systems, and the number of publicly reported AI incidents is increasing
dramatically, it’s clear that more rigorous validation is required. The new
field of model debugging is rising to meet this need. Model debugging
treats ML models more like code and less like abstract mathematics. It
applies a number of different testing methods to find software flaws, logical
errors, inaccuracies, and security vulnerabilities in ML models and AI
system pipelines. Of course, these bugs must also be fixed when they are
found. This section of Chapter 2 explores model debugging in some detail,
starting with basic and traditional approaches, moving onto specialized
testing techniques, delineating the common bugs we’re trying to find, and
closing with a discussion of bug remediation methods.

Software Testing
Basic software testing becomes much more important when we stop
thinking of pretty figures and impressive tables of results as the end goal of

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://www.robust-ml.org/
https://arxiv.org/pdf/1904.12847.pdf
https://www.dropbox.com/s/sdu26h96bc0f4l7/FAT19-AI-Reliability-Final.pdf?dl=0
https://debug-ml-iclr2019.github.io/

an ML model training task. When AI systems are deployed, they need to
work correctly under various circumstances. Almost more than anything
else related to AI and ML systems, making software work is an exact
science. Best practices for software testing are well-known and can even be
made automatic in many cases. At a minimum, mission-critical AI systems
should undergo:

Unit testing

All functions, method, subroutines or other code blocks should have
tests associated with them to ensure they behave as expected, accurately,
and are reproducible. This ensures the building blocks of an AI system
are solid.

Integration testing

All APIs and interfaces between modules, tiers, or other subsystems
should be tested to ensure proper communication. API mismatches after
backend code changes are a classic failure mode for AI systems. Use
integration testing to catch this and other integration fails.

Functional Testing

Functional testing should be applied to AI system user interfaces and
endpoints to ensure that they behave as expected once deployed.

Chaos Testing

Testing under chaotic and adversarial conditions can lead to better
outcomes when your AI systems faces complex and surprising in vivo
scenarios.

Two additional ML-specific tests should be added into the mix to increase
quality further:

Random Attack

Random attacks expose AI systems or ML models to vast amounts of
random data to catch both software and math problems. The real world

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

is a chaotic place. Your AI system will encounter data for which it’s not
prepared. Random attacks can decrease those occurrences and any
associated glitches or incidents.

Benchmarking

Use benchmarks to track system improvements over time. AI systems
can be incredibly complex. How can you know if the 3 lines of code an
engineer changes today made a difference in the performance of the
system as a whole? If system performance is reproducible, and
benchmarked before and after changes, it’s much easier to answer such
questions.

ML is software. So, all the testing that’s done on traditional enterprise
software assets should be done on important AI systems as well. If you
don’t know where to start with modeling debugging, start with random
attack. You may very well be shocked at the math or software bugs random
data can expose in your systems. When you add benchmarks to your
organization’s continuous integration/continuous development (CI/CD)
pipelines, that’s the another big step toward assuring the safety and
performance of AI systems.

Traditional Model Assessment
Once you feel confident that the code in your AI systems is functioning as
expected, it’s easier to concentrate on testing the math of your ML
algorithms. Looking at standard performance metrics is important. But it’s
not the end of the validation and debugging process — it’s the beginning.
While exact values and decimal points matter, from a safety and
performance standpoint, they matter much less than they do on the
leaderboard of an ML contest. When considering in-domain performance,
it’s less about exact numeric values of assessment statistics, and more about
mapping in silica performance to in vivo performance.

If possible, try to select assessment statistics that have a logical
interpretation and practical or statistical thresholds. For instance, root mean

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

squared error (RMSE) can be calculated for many types of prediction
problems, and crucially, it can be interpreted in units of the target variable.
Area under the curve (AUC), for classification tasks, is bounded between
0.5 at the low end and 1.0 at the high end. Such assessment measures allow
for commonsense interpretation of ML model performance and for
comparison to widely accepted thresholds for determining quality. It’s also
important to analyze performance metrics across important segments in
your data and across training, validation, and testing data partitions. When
comparing performance across segments within training data, it’s important
that all those segments exhibit roughly equivalent and high quality
performance. Amazing performance on one large customer segment, and
poor performance on everyone else, will look fine in average assessment
statistic values like RMSE. But, it won’t look fine if it leads to public brand
damage due to many unhappy customers. Varying performance across
segments can also be a sign of underspecification, a serious ML bug that
will be addressed in more detail later in Chapter 2. Performance across
training, validation and test datasets are usually analyzed for under and
overfitting. Like underspecification, these are serious bugs that will receive
more detailed treatment below.

Another practical consideration related to traditional model assessment is
selecting a probability cutoff threshold. Most ML models for classification
generate numeric probabilities, not discrete decisions. Selecting the numeric
probability cutoff to associate with actual decisions can be done in various
ways. While it’s always tempting to maximize some sophisticated
assessment measure, it’s also a good idea to consider real-world impact.
Let’s consider a classic lending example. Say a probability of default model
threshold is originally set at 0.15, meaning that everyone who scores less
than a 0.15 probability of default is approved for a loan, and those that
score at the threshold or over are denied. Think through questions like:

What is the expected monetary return for this threshold?

What is the risk?

How many people will get the loan at this threshold?

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

How many women? How many minority group members?

Outside of the probability cutoff thresholds, it’s always a good idea to
estimate in-domain performance, because that’s what we really care about.
Assessment measures are nice, but what matters is making money versus
losing money, or even saving lives versus taking lives. You can take a first
crack at understanding real-world value by assigning monetary, or other,
values to each cell of a confusion matrix for classification problems or to
each residual unit for regression problems. Do a back-of-the-napkin
calculation. Does it look like your model will make money or lose money?
Once you get the gist of this kind of valuation, you can even incorporate
value levels for different model outcomes directly into ML loss functions,
and optimize towards the best-suited model for real-world deployment.

Error and accuracy metrics will always be important for ML. But once ML
algorithms are used in deployed AI systems, numeric values and
comparisons matter less than they do for publishing papers and playing
Kaggle. So, keep using traditional assessment measures, but try to map
them to in-domain safety and performance.

Residual Analysis for Machine Learning
Residual analysis is another type of traditional model assessment that can
be highly effective for ML models and AI systems. At it’s most basic level,
residual analysis means learning from mistakes. That’s an important thing
to do in life, as well as in organizational AI systems. Moreover, residual
analysis is a tried and true model diagnostic technique. This subsection will
use an example and three generally applicable residual analysis techniques
to apply this established discipline to ML.

Example Setup
Since residual analysis is a fairly technical topic, we’ll use an example
problem and some related figures for clarity’s sake. The figures below are
based on the well-known Taiwanese credit card dataset from the University
of California Irvine (UCI) ML repository. In this dataset, the object is to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

predict if someone will pay, DEFAULT_NEXT_MONTH = 0, or default,
DEFAULT_NEXT_MONTH = 1, on their next credit card payment.
Features about payments are used to generate probabilities of default, or
p_DEFAULT_NEXT_MONTH. The example ML model is trained on
payment features including PAY_0 — PAY_6, or a customer’s most recent
through six months prior repayment statuses (higher values are late
payments), PAY_AMT1 — PAY_AMT6, or a customer’s most recent
through six months prior payment amounts, and BILL_AMT1 —
BILL_AMT6, or a customer’s most recent through six months prior bill
amounts. All monetary values are reported in Taiwanese Dollars (NT$).

Some of the figures also contain the features LIMIT_BAL and
r_DEFAULT_NEXT_MONTH. LIMIT_BAL is a customer’s credit limit.
r_DEFAULT_NEXT_MONTH is a logloss residual value, or a numeric
measure of how far off the prediction, p_DEFAULT_NEXT_MONTH, is
from the known correct answer, DEFAULT_NEXT_MONTH. You may also
see demographic features in the dataset, like SEX, that are used for bias
testing. For the most part, Chapter 2 treats the example credit lending
problem as a general predictive modeling exercise, and does not consider
applicable regulations.

Analysis and Visualizations of Residuals
Plotting residuals and examining them for tell-tale patterns of different
kinds of problems is a long-running model diagnostic technique. And it can
be applied to ML algorithms to great benefit with a bit of creativity and
elbow grease. Simply plotting residuals for an entire dataset can be helpful,
especially to spot outlying rows causing very large numeric errors or to
analyze overall trends in errors. However, breaking residual values and
plots down by feature and level, as illustrated in Figure 2-1, is likely to be
more informative. In the top row of Figure 2-1, favorable values for
PAY_0, -2,-1,0 representing paying on time or not using credit, are
associated with large residuals for customers who default. In the bottom
rows the exact opposite, but still obvious, behavior is displayed. Customer’s
with unfavorable values for PAY_0 cause large residuals when they

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

suddenly pay on time. What’s the lesson here? Figure 2-1 shows that the
ML model in question would make the same mistakes a human, or a simple
business rule, would make. Now that we know about these simplistic
decision processes, which happen to arise from thousands of machine-
learned rules, the model can be improved, or just replaced with a more
transparent and secure business rule: IF PAY_0 < 2 THEN APPROVE,
ELSE DENY.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Figure 2-1. Residuals show that a model makes the same obvious mistakes a human might.
Customers with good payment track records who default suddenly cause large residuals, as do
customers with poor payment track records who suddenly start paying on time. Adapted from

Responsible Machine Learning with Python.

Do you have a lot features or features with many categorical levels? You’re
not off the hook! Start with the most important features and their most
common levels. Residual analysis is considered standard practice for
important linear regression models. ML models are arguably higher-risk
and more failure prone, so they need even more residual analysis and model
debugging.

Modeling Residuals
Modeling residuals with interpretable models is another great way to learn
more about the mistakes your AI system could make. Figure 2-2 displays a
decision tree model of the example ML model’s residuals for
DEFAULT_NEXT_MONTH = 1, or customer’s who default. While it
reflects what was discovered in Figure 2-1, it does so in a very direct way
that exposes the logic of the failures. In fact, it’s even possible to build
programmatic rules about when the model is likely to fail the worst. The
worst residuals occur when: PAY_0 < 0.5 AND PAY_AMT2 >=
2802.5 AND PAY_4 < 1 AND LIMIT_BAL >= 256602.0. Or
more plainly, this model fails when a customer exhibits excellent payment
behavior, but then suddenly defaults.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/jphall663/interpretable_machine_learning_with_python

Figure 2-2. An interpretable decision tree model of the example ML model’s residuals displays
patterns that can be used to spot failure modes and design mitigation approaches. Adapted from

Responsible Machine Learning with Python.

In general this technique helps uncover failure modes. Once failure modes
are known, they can be mitigated to increase performance and safety. For
the example, if the patterns in Figure 2-2 can be isolated from patterns that
result in non-default, this can lead to precise remediation strategies in the
form of model assertions. Model assertions, also known as business rules,
are a mitigation technique that can be applied directly to ML model
predictions to address such discovered failure modes. Model assertions will

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/jphall663/interpretable_machine_learning_with_python

be discussed in greater detail below, but don’t be shy about applying other
common sense actions to increase safety and performance.

Local Contribution to Residuals
Plotting and modeling residuals are older techniques that are well-known to
skilled practitioners. A more recent breakthrough has made it possible to
calculate accurate Shapley value contributions to model errors! This means
for any feature or row of any dataset, we can now know which features are
driving model predictions, and which features are driving model errors.
What this advance really means for ML is yet to be determined, but the
possibilities are certainly intriguing. One obvious application for this new
Shapley value technique is to compare feature importance for predictions to
feature importance for residuals, as illustrated in Figure 2-3.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Figure 2-3. It is now possible to calculate Shapley value contributions to model errors! This means
we can know which features are driving predictions, which features are driving errors, and consider

mitigation approaches for non-robust features that contribute more to errors than to predictions.
Adapted from Responsible Machine Learning with Python.

Figure 2-3 shows accurate Shapley value feature importance on the left, and
accurate Shapley values contributions to residuals on the right, both
aggregated over an entire dataset. This reveals that non-robust features like
PAY_2 and PAY_3 are actually more important to model residuals than
model predictions! Meaning these features should be examined carefully,
have strong regularization or noise injection applied to them, or even be
dropped from the analysis.

This ends our brief tour of residual analysis for ML. Of course there are
other ways to study the errors of ML models. If you prefer another way,
then go for it! The important thing is do some kind of residual analysis for
all high-stakes AI systems. Along with sensitivity analysis, to be discussed
in the next subsection, residual analysis is a major component of the toolkit
for ML model debugging.

Sensitivity Analysis
Unlike linear models, it’s very hard to understand how ML models
extrapolate or perform on new data, without testing them explicitly. That’s
the simple and powerful idea behind sensitivity analysis. Find or simulate
data for interesting scenarios, then see how your model performs on that
data. You really won’t know how your AI system will perform in these
scenarios unless you do basic sensitivity analysis. Of course, there are
structured and more efficient variants of sensitivity analysis, such as in the
interpret library from Microsoft Research. Another great option for
sensitivity analysis, and a good place to start with more advanced model
debugging techniques is random attacks, discussed in “Software Testing”.
Many other approaches, like stress-testing, visualization, and adversarial
example searches also provide standardized ways to conduct sensitivity
analysis:

Stress-Testing

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://github.com/jphall663/interpretable_machine_learning_with_python
https://github.com/interpretml/interpret

Stress-testing involves simulating data that represents realistic adverse
scenarios, like recessions or pandemics, and making sure your ML
models and any downstream business processes will hold up to the
stress of the adverse situation.

Visualizations

Visualizations like plots of accumulated local affect (ALE), individual
conditional local effect (ICE), and partial dependence curves are a well-
known and highly structured way to observe the performance of ML
algorithms across various real or simulated values of input features.

Adversarial Example Searches

Adversarial examples are rows of data that evoke surprising responses
from ML models. Deep learning approaches can be used to generate
adversarial examples for unstructured data, and ICE and genetic
algorithms can be used to generate adversarial examples for structured
data. Adversarial examples, and searching for them, are a great way to
find local areas in your ML response functions or decision boundaries
that can cause incidents once deployed.

Figure 2-4 shows the results of combining visualizations and adversarial
example searches in model debugging. The response surfaces in Figure 2-4
were formed by randomly perturbing a certain interesting row of data many
thousands of times and plotting the associated predictions. How was this
interesting row of data selected for the basis of an adversarial example
search? ICE. The surfaces are based on an ICE curve that showed a
particularly drastic swing for different values of input variables.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Figure 2-4. Adversarial example search shows several interesting positive and negative results.

Getting back to the example data and ML model discussed in previous
sections, Figure 2-4 shows the results of six adversarial example searches,
seeded by an ICE curve, and presents some positive and negative findings.
On the positive side, each response surface shows monotonicity. These
simulations confirm that monotonic constraints, supplied at training time
and based on domain knowledge, held up during training. On the negative
side, a potential logical flaw and a vulnerability to adversarial attack were
also discovered. According to one of the response surfaces, the example
model will issue high probability of default predictions once customers
become two months late on their most recent payment (PAY_0). This harsh
treatment is applied even in the circumstance where a customer repays
(PAY_AMT1) over their credit limit. This potential logical flaw could
prevent pre-payment or over-penalize good customers who failed pay their
bill while on vacation. Another surface also shows a surprisingly steep
spike in predictions for low first (PAY_AMT1) and second payment
(PAY_AMT2) values. This could present an avenue for adversarial examples
to evoke surprisingly high probability of default predictions once the
system is deployed.

Each of the discussed sensitivity analysis approaches and the example
adversarial search technique can provide insight into how your AI system
might perform when it encounters certain kinds of data in the real world. A
theme of this chapter is anticipating how an AI system will perform in the
real-world and making sure it’s performance in the lab is relevant to it’s in
vivo performance, so that appropriate controls can be applied before
deployment. Sensitivity analysis is one of most direct tools for simulating
real-world performance and making sure your AI system is ready for what
it may face once deployed.

Benchmark Models
Benchmark models have been discussed at numerous points within this
chapter. They are a very important safety and performance tool, with uses

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

throughout the AI lifecycle. This subsection will discuss benchmark models
in the context of model debugging and also summarize other critical uses.

The first way to use a benchmark model for debugging is to compare
performance between a benchmark and the AI system in question. If the AI
system does not outperform a simple benchmark, and many may not, it’s
back to the drawing board! Assuming a system passes this initial baseline
test, benchmark models are a comparison tool used to interrogate
mechanisms and find bugs within an AI system. For instance, data scientists
can ask the question: “which predictions does my benchmark get right and
my AI system get wrong?” Given that the benchmark should be well
understood, it should be clear why it is correct, and this understanding
should also provide some clues as to what the AI system is getting wrong.
Benchmarks can also be used for reproducibility and model monitoring
purposes as follows:

Reproducibility Benchmarks

Before making changes to a complex AI system it is imperative to have
a reproducible benchmark from which to measure performance gains, or
losses. A reproducible benchmark model is an ideal tool for such
measurement tasks. If this model can be built into CI/CD processes that
enable automated testing for reproducibility and comparison of new
system changes to established benchmarks, even better!

Debugging Benchmarks

As discussed above, comparing complex ML model mechanisms and
predictions to a trusted, well-understood benchmark model’s
mechanisms and predictions is an effective way to spot ML bugs.

Monitoring Benchmarks

Comparing real-time predictions between a trusted benchmark model
and a complex AI system is a way to catch serious ML bugs in real-
time. If a trusted benchmark model and a complex AI system give
noticeably different predictions for the same instance of new data, this

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

can be a sign of an ML hack, data drift, or even algorthmic
discrimination. In such cases, benchmark predictions can be issued in
place of AI system predictions, or predictions can be withheld until
human analysts determine if the AI system prediction is valid.

If you set benchmarks up efficiently, it may even be possible to use the
same model for all three tasks. A benchmark can be run before starting
work to establish a baseline from which to improve performance, and that
same model can be used in comparisons for debugging and model
monitoring. When a new version of the system outperforms an older
version in a reproducible manner, the ML model at the core of the system
can become the new benchmark. If your organization can establish this kind
of workflow, you’ll be benchmarking and iterating your way to increased
AI safety and performance.

Machine Learning Bugs
Now that we know how to find ML bugs with software QA, traditional
model assessment, residual analysis, sensitivity analysis and benchmark
models, what exactly are we looking for? As discussed elsewhere in this
chapter, there’s a lot that can go wrong, and thinking about an AI system’s
operating environment is key to understanding failure modes. But when it
comes to the math of ML, there are a few emergent gotchas and many well-
known pratfalls. This subsection will discuss some usual suspects and some
dark horse bugs including distributional shifts, instability, looped inputs,
overfitting, underfitting, and underspecification.

Distributional Shifts
Shifts in the underlying data between different training data partitions and
after model deployment are common failure modes for AI systems.
Whether it’s a new competitor entering a market or a devastating world-
wide pandemic, the world is a dynamic place. Unfortunately most of
today’s AI systems learn patterns from static snapshots of training data and
try to apply those patterns in new data. Sometimes that data is holdout

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

validation or testing partitions. Sometimes it’s live data in a production
scoring queue. Regardless, drifting distributions of input features is a
serious bug that must be caught and squashed. (Before you jump to the
conclusion that adaptive, on-line, or reinforcement learning AI systems will
solve the problem of distributional drift, I’d like to point out that such
systems currently implicate untenable risks for in vivo instability and
insecurity.) When training ML models, watch out for distributional shifts
between training, cross-validation, validation, or test sets using KS-, t-, or
other appropriate statistical tests. If a feature has a different distribution
from training partition to another, drop it or regularize it heavily. Another
smart test for distributional shifts to conduct during debugging is to
simulate distributional shifts for potential deployment conditions. Worried
about how your model will perform during a recession? Simulated
distributional shifts to simulate more late payments, lower cash flow, and
higher credit balances and see how your model performs. It’s also crucial to
record information about distributions in training data so that drift after
deployment can be detected easily.

Instability
ML models can exhibit instability in the training process or when making
predictions on live data. Instability in training is often related to small
training data, sparse regions of training data, highly correlated features
within training data, or high-variance model forms, such as deep single
decision trees. Cross-validation is a typical tool for detecting instability
during training. If a model displays noticeably different error or accuracy
properties across cross-validation folds then you have an instability
problem. Training instability can often be remediated with better data and
lower-variance model forms such as decision tree ensembles. Plots of ALE
or ICE also tend to reveal prediction instability in sparse regions of training
data, and instability in predictions can be analyzed using sensitivity
analysis: simulations, stress-testing, and adversarial example searches. If
probing your response surface or decision boundary with these techniques
uncovers wild swings in predictions, or your ALE or ICE curves are
bouncing around, especially in high or low ranges of feature values, you

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

also have an instability problem. This type of instability can often be fixed
with constraints and regularization.

Looped Inputs
As AI systems are incorporated into broader digitalization efforts, or
implemented as part of larger decision support efforts, multiple data-driven
systems often interact. In these cases, error propagation and feedback loop
bugs can occur. Error propagation occurs when small errors in one system
cause or amplify errors in another system. Feedback loops are a way an AI
system can fail by being right. Feedback loops occur when an AI system
affects its environment and then those effects are re-incorporated into
system training data. Examples of feedback loops include when predictive
policing leads to over-policing of certain neighborhoods or when
employment algorithms intensify diversity problems in hiring by
continually recommending correct, but non-diverse, candidates.
Dependencies between systems must be documented and deployed models
must be monitored so that debugging efforts can detect error propagation or
feedback loop bugs.

Leakage
Information leakage between training, validation, and test data partitions
happens when information from validation and testing partitions leaks into
a training partition, resulting in overly optimistic error and accuracy
measurements. Leakage can happen for a variety of reasons, including:

Feature Engineering

If used incorrectly, certain feature engineering techniques such as
imputation or principal components analysis (PCA) may contaminate
training data with information from validation and test data. To avoid
this kind of leakage, perform feature engineering uniformly, but
separately, across training data partitions. Or ensure that information,
like means and modes used for imputation, are calculated in training
data and applied to validation and testing data, and not vice-versa.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Mistreatment of Temporal Data

Don’t use the future to predict the past. Most data has some association
with time, whether explicit as in time-series data, or some other implicit
relationship. Mistreating or breaking this relationship with random
sampling is a common cause of leakage. If you’re dealing with data
where time plays a role, time needs to be used in constructing model
validation schemes. The most basic rule is that the earliest data should
be in training partitions while later data should be divided into
validation and test partitions, also according to time.

Multiple Identical Entities

Sometimes the same person, financial or computing transaction, or other
modeled entity will be in multiple training data partitions. When this
occurs, care should be taken to ensure that ML models do not memorize
characteristics of these individuals then apply those individual-specific
patterns to different entities in new data.

Keeping an untouched, time-aware holdout set for an honest estimate of
real-world performance can help with many of these different leakage bugs.
If error or accuracy on such a holdout set looks a lot less rosy than on
partitions used in model development, you might have a leakage problem.
More complex modeling schemes involving stacking, gates, or bandits can
make leakage much harder to prevent and detect. However, a basic rule of
thumb still applies: do not use data involved in learning or model selection
to make realistic performance assessments. Using stacking, gates, or bandits
means you need more holdout data for the different stages of these complex
models to make an accurate guess at in vivo quality. More general controls
such as careful documentation of data validation schemes and model
monitoring in deployment are also necessary for any AI system.

Overfitting
Overfitting happens when a complex ML algorithm memorizes too much
specific information from training data, but does not learn enough

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

generalizable concepts to be useful once deployed. Overfitting is often
caused by high-variance models, or models that are too complex for the
data at hand. Overfitting usually manifests in much better performance on
training data than on validation, cross-validation, and test data partitions.
Since overfitting is a ubiquitous problem, there are many possible solutions,
but most involve decreasing the variance in your chosen model. Examples
of these solutions include:

Ensemble Models

Ensemble techniques, particularly bootstrap aggregation (i.e., bagging)
and gradient boosting are known to reduce error from single high-
variance models. So, try one of these ensembling approaches if you
encounter overfitting. Just keep in mind that when switching from one
model to many, you can decrease overfitting and instability but you’ll
also likely loose interpretability.

Reducing Architectural Complexity

Neural networks can have too many hidden layers or hidden units.
Ensemble models can have to many base learners. Trees can be too
deep. If you think you’re observing overfitting, make your model
architecture less complex.

Regularization

Regularization refers to many sophisticated mathematical approaches
for reducing the strength, complexity, or number of learned rules or
parameters in an ML model. In fact, many types of ML models now
incorporate multiple options for regularization, so make sure you
employ these options to decrease the likelihood of overfitting.

Simpler Hypothesis Model Families

Some ML models will be more complex than others out-of-the-box. If
your neural network or gradient boosting machine (GBM) look to be
overfit, you can try a less complex decision tree or linear model.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Overfitting is traditionally seen as the Achilles’ heal of ML. While it is one
the most likely bugs to encounter, it’s also just one of many possible
technical risks to consider from a safety and performance perspective. As
with leakage, as ML systems become more complex, overfitting becomes
harder to detect. Always keep an untouched holdout set with which to
estimate real-world performance before deployment. More general controls
like documentation of validation schemes, model monitoring, and A/B
testing of models on live data also need to be applied to prevent overfitting.

Shortcut Learning
Shortcut learning occurs when a complex AI system is thought to be
learning and making decisions about one subject, say anomalies in lung
scans or job interview performance, but it’s actually learned about some
simpler related concept, such as machine identification numbers or Zoom
video call backgrounds. Use interpretable models and explainable AI (XAI)
techniques to understand what learned mechanisms are driving model
decisions, and make sure you understand how your AI system makes
decisions.

Underfitting
If someone tells you a statistic about a set of data, you might wonder how
much data that statistic is based on, and whether that data was of high
enough quality to be trustworthy. What if someone told you they had
millions, billions, or even trillions of statistics for you, they would need lots
of data to make a case that all these statistics were meaningful. Just like
averages and other statistics, each parameter or rule within an ML model is
learned from data. Big ML models need lots of data to learn enough to
make their millions, billions, or trillions of learned induction mechanisms
meaningful. Underfitting happens when a complex ML algorithm doesn’t
have enough training data, constraints, or other input information, and it
learns just a few generalizable concepts from training data, but not enough
specifics to be useful when deployed. Underfitting can be diagnosed by
markedly better performance in validation, cross-validation, and test data
versus training data. It can be mitigated by using simpler models or with

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

additional training data, by constraining ML algorithms, or by providing
additional input information, such as a Bayesian prior.

Underspecification
Forty Google researchers recently published Underspecification Presents
Challenges for Credibility in Modern Machine Learning. This paper gives a
name to a problem that has existed for decades, underspecification.
Underspecification arises from the core ML concept of the multiplicity of
good models, sometimes also called the Rashomon effect. For any given
data set, there are many accurate ML models. How many? Vastly more than
human operators have any chance of understanding in most cases. While we
use validation data to select a good model from many models attempted
during training, validation-based model selection is not a strong enough
control to ensure we picked the best model - or even a servicable model -
for deployment. Say that for some dataset there are a million total good ML
models based on training data and the large number of potential hypothesis
models. Selecting by validation data may cut that number of models down
to a pool of one hundred total models. Even in this simple scenario, we’d
still only have a 1 in 100 chance of picking the right model for deployment.
How can we increase those odds? By injecting domain knowledge into ML
models. By combining validation-based model selection with domain-
informed constraints, we have a much better chance at selecting a viable
model for the job at hand.

Happily, testing for underspecification can be fairly straightforward. One
major symptom of underspecification is model performance that’s
dependent on computational hyperparameters that are not related to the
structure of the domain, data, or model. If your model’s performance varies
due to random seeds, number of threads or GPUs, or other computational
settings, your model is probably underspecified. Another test for
underspecification is illustrated in Figure 2-5.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://arxiv.org/pdf/2011.03395.pdf

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Figure 2-5. Anayzing accuracy and errors across key segments is an important debugging method for
detecting bias, underspecification, and other serious ML bugs.

Figure 2-5 displays several error and accuracy measures across important
segments in the example training data and model. Here a noticeable shift in
performance for segments defined by higher values of the important feature
PAY_0 points to a potential underspecification problem, likely due to data
sparsity in that region of the training data. (Performance across segments
defined by SEX is more equally balanced, which a good sign from a bias
testing perspective, but certainly not the only test to be considered for bias
problems.) Fixing underspecification tends to involve applying real-world
knowledge to ML algorithms. Such domain-informed mechanisms include
graph connections, monotonicity constraints, interaction constraints, beta
constraints, or other architectural constraints.

Each of the ML bugs discussed in this subsection has real-world safety and
performance ramifications. A unifying theme across these bugs is they
cause systems to perform differently than expected when deployed and over
time. Unexpected performance leads to unexpected failures and AI
incidents. Using knowledge of potential bugs and bug detection methods
discussed here to ensure estimates of validation and test performance are
relevant to deployed performance will go a long way toward preventing
real-world incidents.

Remediation: Fixing Bugs
The last step in debugging is fixing bugs. The previous subsections have
outlined testing strategies, bugs to be on the lookout for, and a few specific
fixes. This subsection outlines general ML bug-fixing approaches and
discusses how they might be applied in the example debugging scenario.
General strategies to consider during ML model debugging include:

Anomaly Detection

Strange inputs and outputs are usually bad news for ML systems. These
can be evidence of real-time security, discrimination, and safety and
performance problem. Monitor ML system data queues and predictions

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

for anomalies, record the occurrence of anomalies, and alert
stakeholders to their presence when necessary.

Experimental Design and Data Augmentation

Collecting better data is a often a fix-all for ML bugs. What’s more, data
collection doesn’t have to be done in a trial-and-error fashion, nor do
data scientists have to rely on data exhaust by-products of other
organizational processes for selecting training data. The mature science
of design of experiment (DOE) has been used by data practitioners for
decades to ensure they collect the right kind and amount of data for
model training. Arrogance related to the perceived omnipotence of
“big” data and overly compressed deployment time lines are the most
common reasons data scientists don’t practice DOE. Unfortunately,
these are not scientific reasons to ignore DOE.

Model Assertions

Model assertions are business rules applied to ML model predictions
that correct for shortcomings in learned ML model logic. Using
business rules to improve predictive models is a time-honored
remediation technique that will likely be with us for decades to come. If
there is a simple, logical rule that can be applied to correct a foreseeable
ML model failure, don’t be shy about implementing it. The best
practitioners and organizations in the predictive analytics space have
used this trick for decades.

Model Editing

Given that ML models are software, that software artifact can be edited
to correct for any discovered bugs. Certain models, like GA2Ms or
explainable boosting machines (EBMs) are designed to be edited for the
purposes of model debugging. Other types of models may require more
creativity to edit. Either way, editing must be justified by domain
considerations, as it’s likely to make performance on training data
appear worse. For better or worse, ML models optimize toward lower

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

error. If you edit this highly-optimized structure to make in-domain
performance better, you’ll likely worsen traditional assessment
statistics.

Model Management and Monitoring

ML models and the AI systems that house them are dynamic entities
that must be monitored to the extent that resources allow. All mission-
critical ML systems should be well-documented, inventoried, and
monitored for security, discrimination, and safety and performance
problems in real-time. When something starts to go wrong, stake-
holders need to be alerted quickly. The next major section gives more
detailed treatment of model monitoring.

Monotonicity and Interaction Constraints

Many ML bugs occur because ML models have too much flexibility.
Constraining that flexibility with real-world knowledge is a general
solution to several types of ML bugs. Monotonicity and interaction
constraints, in popular tools like XGBoost, can help ML practitioners
enforce logical domain assumptions in complex ML models.

Noise Injection and Strong Regularization

Many ML algorithms come with options for regularization. However, if
an ML model is over-emphasizing a certain feature, stronger or external
regularization might need to be applied. L regularization can be used to
limit the number of rules or parameters in a model directly, and manual
noise injection can be used to corrupt signal from certain features to de-
emphasize any undue importance in ML models.

There’s more detailed information regarding model debugging and the
example data and model in “Resources”. For now, we’ve learned quite a bit
about model debugging and it’s time to turn our attention to safety and
performance for deployed AI systems.

0

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Deployment
Once bugs are found and fixed, it’s time to deploy your AI system to make
real-world decisions. AI systems are much more dynamic than most
traditional software systems. Even if system operators don’t change any
code or setting of the system, the results can still change. Once deployed,
AI systems must be checked for in-domain safety and performance, they
must be monitored, and their operators must be able to shut them off
quickly. This last major subsection of the chapter will cover how to enhance
safety and performance once an AI system is deployed: domain safety,
model monitoring, and kill switches.

Domain Safety
Domain safety means safety in the real world. This is very different than
standard model assessment, or even enhanced model debugging. How can
practitioners work toward real-world safety goals? A/B testing and
champion challenger methodologies allow for some amount of testing in
real-time operating environments. Process controls, like enumerating
foreseeable incidents, implementing controls to address those potential
incidents, and testing those controls under realistic or stressful conditions
are also important for solid in vivo performance. To make up for incidents
that can’t be predicted, apply chaos testing, random attacks, and manual
prediction limits to your AI system outputs.

Foreseeable real-world incidents

A/B testing and champion-challenger approaches, in which models are
tested against one another on live data streams or under other realistic
conditions are a first step toward robust in-domain testing. Beyond these
somewhat standard practices, resources should be spent on thinking
through possible incidents. For example common failure modes in
credit lending include algorithmic discrimination, lack of transparency,
and poor performance during recessions. For other applications, say
autonomous vehicles, there are numerous ways they could accidentally
or intentionally cause harm. Once potential incidents are recorded, then

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

safety controls can be adopted for the most likely or most serious
potential incidents. In credit lending, models are tested for
discrimination, explanations are provided to consumers via adverse
action notices, and models are monitored to catch performance
degradation quickly. In autonomous vehicles, we still have a lot to learn
(as the Chapter 1 case showed). Regardless of the application, safety
controls must be tested, and these tests should be realistic and
performed in collaboration with domain experts. When it comes to
human safety, simulations run by data scientists are not enough. Safety
controls need to be tested and hardened in vivo and in coordination with
people who have a deep understanding of safety in the application
domain.

Unforeseeable real-world incidents

Interactions between AI systems and their environments can be complex
and surprising. For high-stakes AI systems, it’s best to admit that
unforeseeable incidents can occur. We can try to catch some of these
potential surprises before they occur with chaos testing and random
attacks. Important AI systems should be tested in strange and chaotic
use cases and exposed to large amounts of random input data. While
these are time- and resource-consuming tests, they are one of the few
tools available to test for so-called “unknown unknowns.” Given that no
testing regime can catch every problem, it’s also ideal to apply common
sense prediction limits to systems. For instance, large loans or interest
rates should not be issued without some kind of human oversight. Nor
should autonomous vehicles be allowed to travel at very high speeds
without human intervention. Some actions simply should not be
performed purely automatically as of today and prediction limits are one
way to implement that kind of control.

Another key aspect of domain safety is knowing if problems are occurring.
Sometimes glitches can be caught before they grow into harmful incidents.
To catch problems quickly, AI systems must be monitored. If incidents are
detected, incident response plans or kill-switches may need to be activated.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Model Monitoring
It’s been mentioned numerous times in this chapter, but important AI
systems must be monitored once deployed. This subsection focuses on the
technical aspects of model monitoring. It outlines the basics of model decay
and concept drift bugs, how to detect and address drift, the importance of
measuring multiple key performance indicators (KPIs) in monitoring, and it
briefly highlights a few other notable model monitoring concepts.

Model Decay and Concept Drift
No matter what you call it, the data coming into an AI system is likely to
drift away from the data on which the system was trained. The change in
the distribution of input values over time is sometimes labeled “data drift.”
The statistical properties of what you’re trying to predict can also drift, and
sometimes this is known specifically as “concept drift.” The COVID-19
crisis is likely one of history’s best examples of these phenomena. At the
height of the pandemic, there was likely a very strong drift toward more
cautious consumer behavior accompanied by an overall change in late
payment and credit default distributions. These kinds of shifts are painful to
live through, and they can wreak havoc an AI system’s accuracy.

Detecting and Addressing Drift
The best approach to detect drift is to monitor the statistical properties of
live data — both input variables and predictions. Once a mechanism has
been put in place to monitor statistical properties, you can set alerts or
alarms to notify stakeholders when there is a significant drift. Testing inputs
is usually the easiest way to start detecting drift. This is because sometimes
true data labels, i.e., true outcome values associated with AI system
predictions, cannot be known for long periods of time. In contrast, input
data values are available immediately whenever an AI system must
generate a prediction or output. So, if current input data properties have
changed from the training data properties, you likely have a problem on
your hands. Watching AI system outputs for drift can be difficult due to the
information needed to compare current and training quality might not be

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

available immediately. (Think about mortgage default versus online
advertising — default doesn’t happen at the same pace as clicking on an
online advertisement.) The basic idea for monitoring predictions is to watch
predictions in real-time and look for drift and anomalies, potentially using
methodologies such as statistical tests, control limits, and rules or ML
algorithms to catch outliers. And when known outcomes become available,
test for degradation in model performance and fairness quickly and
frequently.

There are known strategies to address inevitable drift and model decay.
These include:

Refreshing an AI system with extended training data containing
some amount of new data.

Refreshing or retraining AI systems frequently.

Refreshing or retraining an AI system when drift is detected.

It should be noted that any type of retraining of ML models in production
should be subject to the risk mitigation techniques discussed in this chapter
and elsewhere in this book — just like they should be applied to the initial
training of an AI system.

Monitoring Multiple Key Performance Indicators
Most discussions of model monitoring focus on model accuracy as the
primary key performance indicator (KPI). Yet, discrimination, security
vulnerabilities, and privacy harms can, and likely should, be monitored as
well. The same discrimination testing that was done at training time can be
applied when new known outcomes become available. Numerous other
strategies, discussed elsewhere in the book, can be used to detect malicious
activities that could compromise system security or privacy. Perhaps the
most crucial KPI to measure, if at all possible, is the actual impact of the
ML system. Whether it’s saving or generating money, or saving lives,
measuring the intended outcome and actual value of the ML system can
lead to critical organizational insights. Assign monetary or other values to

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

confusion matrix cells in classifications problems, and to residual units in
regression problems, as a first step toward estimating actual business value.

Out-of-range Values
Training data can never cover all of the data an AI system might encounter
once deployed. Most ML algorithms and prediction functions do not handle
out-of-range data well, and may simply issue an average prediction or
crash, and do so without notifying application software or system operators.
AI system operators should make specific arrangements to handle data,
such as large magnitude numeric values, rare categorical values, or missing
values that were not encountered during training so that AI systems will
operate normally when they encounter out-of-range data.

Anomaly Detection and Benchmark Models
Anomaly detection and benchmark models round out the technical
discussion of model monitoring in this subsection. These topics have been
treated elsewhere in this chapter, and are touched on briefly here.

Anomaly Detection

Strange input or output values in an AI system can be indicative of
stability problems or security and privacy vulnerabilities. It’s possible to
use statistics, ML, and business rules to monitor anomalous behavior in
both inputs and outputs, and across an entire AI systems. Record any
such detected anomaly, report them to stakeholders, and be ready to take
more drastic action when necessary.

Benchmark Models

Comparing simpler benchmark models and AI system predictions as
part of model monitoring can help to catch stability, fairness, or security
anomalies in near real-time. A benchmark model should be more stable,
easier to confirm as minimally discriminatory, and should be harder to
hack. Use a highly transparent benchmark model and your more
complex AI system together when scoring new data, then compare your
AI system predictions against the trusted benchmark prediction in real-

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

time. If the difference between the AI system and the benchmark is
above some reasonable threshold, then fall back to issuing the
benchmark model’s prediction or send the row of data for more review.

Whether it’s out-of-range values in new data, disappointing KPIs, drift, or
anomalies — these real-time problems are where rubber meets road for AI
incidents. If you’re monitoring detects these issues, a natural inclination
will be to turn the system off, and the next subsection addresses kill
switches for AI systems.

Kill Switches
Kill switches are rarely single switches or scripts, but a set of business and
technical processes bundled together that serve to turn an AI system off — 
to the degree that’s possible. There’s a lot to consider before flipping a
proverbial kill switch. AI system outputs often feed into downstream
business processes, sometimes including other AI systems. These systems
and business processes can be mission critical, for example, an AI system
used for credit underwriting or e-retail payment verification. To turn off an
AI system, you’ll not only need the right technical know-how and personnel
available, but you also need an understanding of the system’s place inside
of broader organizational processes. During an ongoing AI incident is a bad
time to start thinking about turning off a fatally flawed AI system. So, kill
processes and kill switches are a great addition to your ML system
documentation and AI incident response plans (see Chapter 1). This way,
when the time comes to kill an AI system, your organization can be ready to
make a quick and informed decision. Hopefully you’ll never be in a
position where flipping an AI system kill switch is necessary, but
unfortunately AI incidents have grown more common in recent years. When
technical remediation methods are applied along side cultural competencies
and business processes for risk mitigation, safety and performance of AI
systems is enhanced. When these controls are not applied, bad things can
happen.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Case Study: Remediating the Strawman
This chapter’s case study takes a deeper look at how to fix the strawman
GBM model discussed in the technical examples. Recall that we found this
model to pathologically over-emphasize a customer’s most recent
repayment status (PAY_0), we found that some seemingly important input
variables were more important to the loss than to the predictions, we found
vulnerable spikes and potential logical errors in the response surface, and
we saw poor performance, if not underspecification, for PAY_0 values
greater than 1. All of these issues conspired to make a seemingly passable
ML model less appealing than a simple business rule. Because many ML
models are not adequately debugged before deployment, it’s likely that you
could find yourself with similar bugs to handle if you applied the debugging
techniques in this chapter to one of your organization’s models. For the
example data and model, several techniques could be applied to remediate
the highlighted bugs. Let’s try to address them one by one as an example of
how you could take on these bugs at your job:

Logical errors

For the logical errors that cause high probability of default to be issued,
even after very large payments are made, model assertions or business
rules are a likely solution. For customer’s who just recently became two
month delinquent, use a model assertion or business rule to check if a
large payment was also made recently before posting the adverse default
prediction. A residual model like the one in Figure 2-2, focused on that
small group of customers could help suggest or refine more targeted
assertions or rules.

Over-emphasis of PAY_0

Perhaps the biggest problem with the strawman model, and many other
ML models, is bad training data. In this case, training data should be
augmented with new, relevant features to spread the primary decision-
making mechanisms within the model across more than one feature.
Noise injection to corrupt PAY_0 could also be used to mitigate over-

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

emphasis, but only if there are other accurate signals available in better
training data. Look into design of experiment as well. Collecting
appropriate training data is seen as a mature science in many other data-
driven disciplines that weren’t as accepting of by big data hype.

Non-robust input variables

For PAY_2 and PAY_3, the seemingly important input features that
ended up being more important to logloss residuals than to model
predictions, several different experiments could be performed.
Assuming better training data doesn’t mitigate these problems, an A/B
or champion-challenger platform would need to be established, so that
test results can be measured in vivo, instead of just in silica. Once you
can test model changes on realistic data, the first thing to test would be
simply retraining the model without PAY_2 and PAY_3. Other
interesting experiments could include the application of strong
regularization or noise injection to test whether a model would
emphasize these features in the same non-robust ways.

Security vulnerabilities

In general, best practices like API throttling and authentication,
coordinated with real-time model monitoring, help a lot with ML
security. In the case of the example model, the problems is particularly
thorny. In many circumstances, the model should give higher
probabilities of default for customers who make small payments. The
issue here is the dramatic spike in output probabilities for low PAY_1
and PAY_2 values. Regularization or robust ML techniques could be
applied during training to smooth out swings in the response function,
and this region of the response function could be monitored more
carefully with an eye toward adversarial manipulation. For instance, if a
row of data appears in the live scoring queue with low values for
PAY_1 and PAY_2 and random values for other features, this would
certainly be cause for human review and delaying predictions.

Poor performance for PAY_0 > 1

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

Like many of the other problems with the strawman, this model needs
better data to learn more about customers who end up defaulting. In the
absence this information, observation weights or over-sampling could
be used increase the influence of the small number of customers who
did default. However, in the PAY_0 > 1 region, the model predictions
may simply be unusable. The model’s monotonicity constraints,
discussed briefly in previous sections, are one of the best mitigants to
try when faced with sparse training data. The monotonicity constraints
enforce well-understood real-world controls on the model. Yet, model
performance for PAY_0 > 1 is extremely poor even with these
constraints. Predictions in this range may have to handled by a more
specialized model, a rule-based system, or even human case workers.

Like AI in general, model debugging is likely still in its infancy. Where it
goes from here is largely up to us. Whenever AI is adopted for business- or
life-critical decisions, I personally hope to see a lot more responsible AI and
model debugging. One final note to address before closing this chapter is
that in-depth analysis of discrimination testing and remediation is left for
other chapters of the book. This is an incredibly important topic, a very
common failure mode for AI systems, and one deserving fulsome coverage
and analysis on its own.

Resources
Following is a list of further reading and code examples related to model
debugging examples.

Further reading: Real-World Strategies for Model Debugging

Code examples:

“Testing machine learning models for accuracy, trustworthiness,
and stability with Python and H2O”

“All models are wrong … but why is my model wrong?”

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://towardsdatascience.com/strategies-for-model-debugging-aa822f1097ce
https://nbviewer.jupyter.org/github/jphall663/interpretable_machine_learning_with_python/blob/master/resid_sens_analysis.ipynb
https://nbviewer.jupyter.org/github/jphall663/interpretable_machine_learning_with_python/blob/master/debugging_sens_analysis_redux.ipynb

https://nbviewer.jupyter.org/github/jphall663/interpretable_machin
e_learning_with_python/blob/master/debugging_resid_analysis_re
dux.ipynb

Talks, workshops, and educational materials related to model debugging
and ML safety and performance:

Debugging Machine Learning Models

Safe and Reliable Machine Learning

Testing and Debugging in Machine Learning.

Toolkits for model debugging:

checklist

cleverhans

manifold

What-If Tool

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

https://nbviewer.jupyter.org/github/jphall663/interpretable_machine_learning_with_python/blob/master/debugging_resid_analysis_redux.ipynb
https://debug-ml-iclr2019.github.io/
https://www.dropbox.com/s/sdu26h96bc0f4l7/FAT19-AI-Reliability-Final.pdf?dl=0
https://developers.google.com/machine-learning/testing-debugging/common/overview
https://github.com/marcotcr/checklist
https://github.com/cleverhans-lab/cleverhans
https://github.com/uber/manifold
https://pair-code.github.io/what-if-tool/index.html#about

About the Authors
Patrick Hall is principal scientist at bnh.ai, a D.C.-based law firm focused
on AI and data analytics. Patrick also serves as visiting faculty at the
George Washington University School of Business (GWSB) where his
teaching and research focus on data mining, machine learning, and the
responsible use of these technologies. Before cofounding bnh.ai, Patrick led
responsible AI efforts at H2O.ai, a leading machine learning software firm.
His work at H2O.ai resulted in one of the world’s first commercial solutions
for explainable and fair machine learning. Among other academic and
technology media writing, Patrick is the primary author of popular ebooks
on explainable and responsible machine learning.

Before joining H2O.ai, Patrick held global customer-facing and R&D roles
at SAS, where he authored multiple patents in automated market
segmentation using novel clustering methods and deep learning. He was
also the 11th person worldwide to become a Cloudera certified data
scientist during these years. Patrick studied computational chemistry at the
University of Illinois before graduating from the Institute for Advanced
Analytics at North Carolina State University.

Rumman Chowdhury is the Director of ML Ethics, Transparency, and
Accountability (META) at Twitter, leading a team of engineers, data
scientists and researchers on applied Responsible AI practices. Prior to
Twitter, she was cofounder and CEO of an algorithmic auditing startup,
Parity, and Accenture Applied Intelligence’s Global Lead for Responsible
AI.

Her passion lies at the intersection of artificial intelligence and humanity.
She holds degrees in quantitative social science and has been a practicing
data scientist and AI developer since 2013. Rumman has been featured in
international media, including the Financial Times, Harvard Business
Review, NPR, MIT Sloan Magazine, MIT Technology Review, BBC, Axios,
Cheddar TV, CRN, The Verge, Fast Company, Quartz, Corrierre Della
Serra, Optio, Australian Broadcasting Channel, and Nikkei Business Times.

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

1. Preface

a. Who Should Read This Book

b. What Readers Will Learn

i. Preliminary Book Outline

ii. Bringing It All Together

c. Conventions Used in This Book

d. O’Reilly Online Learning

e. How to Contact Us

f. Acknowledgments

2. 1. Contemporary Model Governance

a. Basic Legal Obligations

b. AI Incidents

c. Organizational and Cultural Competencies for
Responsible AI

i. Accountability

ii. Drinking Your Own Champagne

iii. Diverse and Experienced Teams

iv. “Going Fast and Breaking Things”

d. Organizational Processes for Responsible AI

i. Forecasting Failure Modes

ii. Model Risk Management

iii. Beyond Model Risk Management

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

e. Case Study: Death by Autonomous Vehicle

i. Fallout

ii. An Unprepared Legal System

iii. Lessons Learned

3. 2. Debugging AI Systems for Safety and Performance

a. Training

i. Reproducibility

ii. Data Quality and Feature Engineering

iii. Model Specification

b. Model Debugging

i. Software Testing

ii. Traditional Model Assessment

iii. Residual Analysis for Machine Learning

iv. Sensitivity Analysis

v. Benchmark Models

vi. Machine Learning Bugs

vii. Remediation: Fixing Bugs

c. Deployment

i. Domain Safety

ii. Model Monitoring

d. Case Study: Remediating the Strawman

e. Resources

https://t.me/bookzillaaa - https://t.me/ThDrksdHckr

	Preface
	Who Should Read This Book
	What Readers Will Learn
	Preliminary Book Outline
	Bringing It All Together

	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Contemporary Model Governance
	Basic Legal Obligations
	AI Incidents
	Organizational and Cultural Competencies for Responsible AI
	Accountability
	Drinking Your Own Champagne
	Diverse and Experienced Teams
	“Going Fast and Breaking Things”

	Organizational Processes for Responsible AI
	Forecasting Failure Modes
	Model Risk Management
	Beyond Model Risk Management

	Case Study: Death by Autonomous Vehicle
	Fallout
	An Unprepared Legal System
	Lessons Learned

	2. Debugging AI Systems for Safety and Performance
	Training
	Reproducibility
	Data Quality and Feature Engineering
	Model Specification

	Model Debugging
	Software Testing
	Traditional Model Assessment
	Residual Analysis for Machine Learning
	Sensitivity Analysis
	Benchmark Models
	Machine Learning Bugs
	Remediation: Fixing Bugs

	Deployment
	Domain Safety
	Model Monitoring

	Case Study: Remediating the Strawman
	Resources

